KNOWLEDGE

Physics Paper 1 Topic 3: Particles

ORGANISER

Sect	Section 1: Key Terms and Definitions			Section 2: Techniques for Measuring Density				
1	Density	How much mass a substance contains compared to its volume. Solids are usually dense because the particles are closely packed. Measured in kg/m ³ (or g/cm ³).	Measuring a F	Regular Solid	Measuring an Irregular Solid	Using a Measuring Cylinder Correctly		
2	Volume	The amount of space a liquid takes up. Measured in cm ³ .	a	b		liquid meniscus cm ³ of the		
3	Mass	A measure of how many particles are in a substance. Measured in kg (or g).				120 meniscus 100 80 observer's view 40 cylinder		
4	Float	Objects float on water if the density of the object is less than 1000kg/m ³ (1 g/cm ³).		c	$\rightarrow \bigcirc \rightarrow \bigcirc$			
5	Sink	Objects sink in water if the density of the object is more than 1000kg/m ³ (1 g/cm ³).			E			
6	State of Matter	The way in which the particles are arranged – solid, liquid or gas	Measure vo	olume of a	Volume of an irregular	When reading a meniscus		
7	Change of State	When a substance changes from one state of matter to another (e.g. melting is the change from a solid to a liquid) Energy changes the state, not the temperature.	cuboid = a x b x c c d		object can be found by dropping in a liquid and measuring Displacement.	the observer must read the bottom of the meniscus.		
8	Physical Change	A change that can be reversed to recover the original material. e.g. a change of state.						
9	Chemical Change	A change that creates new products. It cannot be reversed. e.g. a chemical reaction	Section 3: Star			Solid		
10	Internal Energy	The energy stored inside a system by the particles (atoms and molecules) that make up the system. Internal energy is the total kinetic energy and potential energy of all the particles.	Subination .	s 0 0		Particles held in fixed pattern but		
11	Kinetic Energy	Energy stored within moving objects (e.g. particles)	, iblima	Gas		vibrating		
12	Potential Energy	Energy stored in particles because of their position. The further apart the particles are, the greater the potential energy.		Malti		Liquid		
13	Specific Heat Capacity	The specific heat capacity of a substance is the amount of energy required to raise the temperature of one kilogram of the substance by one degree Celsius.	Solid Mettr		zing	Particles packed together in a random fashion,		
14	Temperature	The average kinetic energy of the particles.			Liquid	free to move		
15	Specific Latent Heat	The amount of energy required to change the state of one kilogram of the substance with no change in temperature.	Condensation	Process in wh	nich a gas turns into a liquid	Gas		
16	Latent Heat of Fusion	Energy required to change state from solid to liquid.	Freezing	Process in wh	nich a liquid turns into a gas nich a liquid turns into a	Particles widely		
17	Latent Heat of Vaporisation	Energy required to change state from liquid to gas.	Melting Process in which a solid		nich a solid turns into a	freely at speed		
18	Work Done on a Gas	When a gas is compressed, a force is used to compress it. Energy is transferred in compressing the gas, so work is done on the gas.	Sublimation	liquid Process in wh without going	nich a solid turns into a gas g through a liquid stage			

KNOWLEDGE

Section 4: The Heating Curve

Temperature (°C)	Boiling Point Boiling Point Melting Point Solid - Liquid Solid - Liquid Freezing Freezing Solid - Liquid Solid	E
	Time (seconds)	

085	Solid	Particles are closely packed, fixed and arranged in regular layers. As more energy is absorbed the kinetic energy and therefore the internal energy of the material increases.	
	Melting	Temperature doesn't change. Energy is used to weaken the forces between particles. As more energy is absorbed the potential energy and therefore the internal energy of the material increases.	
	Liquid Particles are touching but no longer arranged regularly. They are able to move past each other. As more energy is absorbed the kinetic energy and therefore the internal energy of the material increases.		
	Evaporation Temperature doesn't change. Energy is used to weaken the forces between particles. As more er absorbed, the potential energy and therefore the internal energy of the material increases.		
	Boiling Point	The temperature at which a liquid boils and turns to vapour	
	Melting Point	The temperature at which a solid melts and turns to a liquid	
•	Gases	Gas particles have the most energy, they have chaotic random movements in all directions. They can be compressed.	

Section 5: Properties of Solids, Liquids and Gases

State	Particle Arrangement	Distance between particles	Strength of forces	Movement of Particles	Internal Energy
Solid	Fixed	Closely packed together	Strong	Vibrates about fixed position	Lowest Internal Energy
Liquid	Not fixed	Touching but irregularly arranged	Weak	Move past each other	More than solids, less than gases
Gas	Not fixed	Far apart	Very Weak (Insignificant)	Moves freely	Highest Internal Energy

Section 6: Internal Energy	Section 7: Gas Pressure						
The energy stored by the particles of a substance is called the	Collisions	Brownian Motion	Temperature	Guy-Lussac's Law	Boyles's Law		
 substance's internal energy. This is the energy of the particles that is caused by their individual motion and positions. The internal energy of the particles is the sum of: the kinetic energy they have due to their individual motions relative to each other, and; 		No to	100 C Boiling point of water 373 K 0 C Freezing point of water 273 K -273 C Absolute zero 0 K Centigrade Kelvin	1.0L 1 atm 150K 1.0L			
 the potential energy they have due to their individual positions relative to each other. 	The force exerted by	The unpredictable	For Gas Laws,	For a fixed mass of gas	For a fixed mass of gas		
Heating the substance can increase the internal energy in	gases off a surface as	notion of shoke	always be measured	the pressure is	temperature the		
 Increasing the temperature increases the kinetic energy of each particle. Changing the state of the substance (melting or boiling) increases the potential energy of the substance. 	with it. The greater the number of collisions with a surface, the greater the pressure.	of the random motion of gas particles. Each change of direction is caused by a collision with another particle.	in Kelvin (Celsius + 273)	proportional to the temperature. Increasing the temperature increases the volume.	pressure is inversely proportional to the volume. Decreasing the volume increases the pressure.		