Physics Paper 1 Topic 4: Atomic Structure

ORGANISER

Secti	on 1: Key Terms	and Definitions	Section 2: Development of the Atomic Model					
1	Atom	The smallest part of an element that can exist. All substances are made of atoms. Atoms have no overall electrical charge. They are very small with a radius of 0.1nm.	Thomson's Plum Pudding Model	Rutherford's N	Nuclear Model	E	3ohr's Model	
2	Element	An element contains only one type of atom. Found on the periodic table. There are over 100 elements.	+ + Positive Charge	Electron		n	= 2 = 1 AWW electromagnetic	
3	Isotope	An atom of the same element with a different number of neutrons. All isotopes of a particular element have the same atomic number	+ + + + + + Negatively Charged		Neutron		* radiation	
4	Radioactive Decay	When an unstable nucleus changes to become more stable and emits radiation. Happens randomly	Thomson's Plum Pudding	Rutherford's n	nodel	Bohr sug	gested a model of	
5	Radiation Dose	Measure of the exposure to radiation, measured in sieverts (Sv).	that the atom was a sphere	atom must be	empty space.	move round the nucleus in circular orbits. In this model electrons can change their orbits. This further refined the work of Rutherford.		
6	Activity	The rate at which decay occurs. Measured in Becquerel (Bq). 1 Becquerel is 1 decay per second.	negatively charged	charged nucle	us v electrons			
7	Count Rate	Number of decays recorded each second by a Geiger-Muller Tube	This model was proven to be incorrect by Rutherford.	orbiting it. Over time, this	s model was			
8	Half Life	The time it takes for the number of nuclei of the isotope in a sample to halve.		refined by the the neutron.	discovery of			
		Or, The time it takes for the count rate (or activity) from a sample containing the isotope to fall to half its initial level.	Energy Levels: Absorption of ra (higher energy level) Emission of radiation may lead	adiation may lea	d to electrons r oving closer to t	noving furt he nucleus	ther from the nucleus	
9	lonisation	Radiation can ionize by removing the electrons from atoms to form ions. If this happens in DNA it could lead to a mutation that causes cancer	Section 3: Atomic Number and Mass Number					
10	Proton	Positively charged particle found in the nucleus	Mass Number:				132.91	
11	Neutron	Neutral (not charged) particle found in the nucleus		ind neutrons			Cs	
12	Electron	Negatively charged particle found orbiting the nucleus at different distances depending which shell it is in.	Atomic Number: The number (In an atom, the number of ele	of protons with ectrons would be	in an atom. e the same)		► 55	
13	Nucleus	Centre of the atom 1/10,000 of the size of the atom but contains most of the mass of the atom.						
14	lon	An atom with either more or less electrons than the protons,	Section 4: Properties of Sub	Atomic Partic	les Charge		Location in Atom	
15	Background	Radiation present in the environment around us, comes from:	Droton	1		=		
	Radiation	Natural sources such as rocks, soil and cosmic rays.	Proton	1				
		Man-made sources such as fallout from nuclear	Neutron	1	0 (Neutr	ai)	In Nucleus	
		weapons exploding, radiation leaks from accidents at nuclear power stations.	Electron	$\frac{1}{2000}$	-1 (Negat	ive)	Orbiting Nucleus	

Physics Paper 1 Topic 4: Atomic Structure

ORGANISER

Section 5: Nuclear Radiation					Section 6: Decay Equations					
Radiation	Range in Air	Absorbed by	Ionising Power	Consists of	Alpha Desay	${}^{219}_{86}Rd \rightarrow {}^{215}_{84}Po + {}^{4}_{2}He$ In alpha decay a helium nucleus (2 protons and 2 neutrons) is emitted. The new element formed has a mass number that has decreased by 4 (219 - 215 = 4) and atomic number that has decreased by 2 (86 - 84 = 2). ${}^{14}C \rightarrow {}^{14}N + {}^{0}e$				
Alpha, α	Short – up to 5cm	Paper and skin	Very High	2 protons and 2 neutrons (Helium nucleus)						
Beta, β	Medium – about 1m	Vedium – About 5mm of about 1m Aluminium		Medium Electron		$_{6}C \rightarrow _{7}N + _{-1}e$ In beta decay a neutron turns into a proton. An electron is emitted. The new element formed has a mass number that stays the same and an				
Gamma, γ	Unlimited	Several Centimetres of lead	Low	Electromagnetic Wave	Gamma Ray	atomic number which increased by 1(6 + 1 = 7). Decay by Gamma emission causes no change in the mass or stru		7). in the mass or structure of		
				Emission	n the nucleus.					
Section 7: Half-Life and Activity Counts					Section 8: Uses of Radioactivity					
80	80 1			Smoke D	Detectors	Thickne	ss Control	Carbon Dating		
90 91 50						Paper LO20801		Ceiger Mulier Mulier Metal circuitry to b how close the transport	For 11 the spectra Action The State Spectra	
ad stuno 0 30 20 10					Smoke detect small amount Americium-24 emitter. Smol detector bloc particles, trigg alarm.	ors contain a of 41, an alpha ke in the ks alpha gering the	A beta emitte half-life is use from the sour continually m count rate dro thickness is to the rollers sep	er with very long ed. Radiation rce is onitored. If the ops, the oo great and oarate.	Used to find the age of ancient materials. Living wood has a tiny proportion of radioactive carbon C-14. The lower the proportion of C-14, the older the object being tested.	
0					Section 9 [.] Irradiation vs Contamination					
0 1 2 3 4 5 6 7 8 9 10 Time (Days)				Irradiation Contamination						
Halve the initial activity (80 ÷ 2 = 40) Draw a line across on the graph until you reach the curve Draw a line down (half-life = 2 days) However, the activity never reaches zero.					Objects that a are irradiated The object is e irradiating it d radioactive.	Objects that are near a radioactive source are irradiated by it.If unwanted radioactive atoms into a material, then it is said t contaminated.The object is exposed to the radiation, but irradiating it does not make the object radioactive.If unwanted radioactive atoms into a material, then it is said t contaminated.The object is exposed to the radiation, but irradiating it does not make the object releasing radiation which couldThe radioactive atoms will the releasing radiation which could			dioactive atoms get onto or then it is said to be atoms will then decay, tion which could cause harm.	

Physics Paper 1 Topic 4: Atomic Structure

ORGANISER

Physics Paper 1 Topic 4: Atomic Structure

ORGANISER

Section 12: Nuclear Fission

Heavy atomic nuclei such as Uranium-235 and Plutonium-239 can be split when struck by a fast moving neutron. These isotopes are said to be "fissionable materials".

- Unstable nuclei are bombarded with neutrons.
- The nuclei undergo fission and split.
- Two smaller nuclei are formed plus neutrons.
- Energy is released.

- Released neutrons cause more nuclei to split which produces a chain reaction.
- The reaction is controlled using control rods which absorb the neutrons (slowing down the chain reaction).
- A water coolant removes the heat energy.

Section 14: Nuclear Fusion

- Two light nuclei join (fuse) to form a single heavier nucleus.
- For example, two Helium nuclei fuse to form a Beryllium nucleus.
- Energy is released when the nuclei fuse more energy than when heavy nuclei split due to fission.

The sun releases energy due to the nuclear fusion reaction of fusing hydrogen into helium.

Section 13: Chain Reactions

When fissionable material is split, it produces 2 smaller atomic nuclei plus 2 or 3 extra neutrons.

These extra neutrons can collide with other fissionable nuclei to cause further fission reactions.

This is known as a chain reaction. In a nuclear reactor the chain is controlled so that each nuclei split only releases neutrons to split one further nuclei.

Section 15: Comparing Nuclear Fission and Nuclear Fusion

Nuclear Fission	Nuclear Fusion
Been used for over 50 years	A developing technology. Needs to be at a high temperature and pressure for reaction take place and generate electricity
Uses uranium (only found in some parts of the world)	Hydrogen fuel easily available as present in sea water.
Produces radioactive nuclear waste which has to be stored safely and securely	Produces no harmful waste.