Biology 4: Bioenergetics

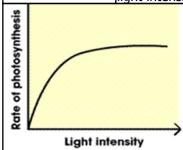
Section 1: Photosynthesis Equation

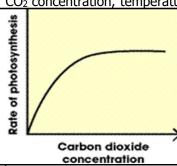
light

1 Carbon dioxide + water \rightarrow glucose + oxygen

2 6CO₂ $C_6H_{12}O_6 +$

Section 2: Key terms		
3 Chloroplast	The plant organelle where photosynthesis takes place.	
4 Chlorophyll	The green pigment that absorbs energy from light.	
5 Endothermic	Photosynthesis takes energy in (in the form of light). It is an endothermic reaction.	
6 Diffusion	The spreading out of particles by random motion from where they are in high concentration to a low concentration. Occurs in gases and liquids.	


Section 3: Uses of Glucose


7 Used in **respiration** to release **energy**.

- 8 Converted into starch for storage.
- 9 Converted into fats and oils for storage.
- 10 Produce **cellulose** to **strengthen** the **cell wall**.
- 11 Produce **amino acids** to **make proteins** (also needs nitrate ions from the soil)

Section 4: Limiting Factors

The factor that stops the rate of photosynthesis from increasing; could be 12 Limiting Factor light intensity, CO₂ concentration, temperature or amount of chlorophyll.

13 Light Intensity

Initially light is the limiting factor. Initially CO₂ concentration is the When the graph plateaus something else (e.g. CO₂ concentration, temperature) is limiting the rate.

14 CO₂ concentration

limiting factor. When the graph plateaus something else (e.g. light intensity, temperature) is limiting the rate.

15 Temperature

As temperature increases, the rate of photosynthesis increases. Above the optimum there is a decrease in photosynthesis. Enzymes needed for photosynthesis become denatured.

Section 5: Respiration	
16 Energy	Energy in organisms is needed for chemical reactions to build larger molecules , movement and keeping warm .
17 Aerobic Respiration	Aerobic respiration provides energy . It requires oxygen . It is an exothermic reaction (produces heat). In mitochondria . Glucose + oxygen -> carbon dioxide + water (+energy)
	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O (+energy)$
18 Anaerobic Respiration (muscles)	No oxygen needed. Provides less energy than aerobic respiration as glucose not fully oxidised. Occurs during intensive exercise. In cytoplasm. Glucose → lactic acid
19 Lactic Acid	Produced in anaerobic respiration in muscles. Build up of lactic acid causes fatigue. Lactic acid must be taken to the liver by the blood so that it can be oxidised back to glucose.
20 Oxygen Debt	The amount of extra oxygen the body needs after exercise to react with the lactic acid and remove it.
21 Anaerobic Respiration (plant and yeast cells)	No oxygen needed. In yeast cells it is called fermentation – economically important for manufacture of bread and alcoholic drinks . In cytoplasm . Glucose → ethanol + carbon dioxide

Section 5: Response to Exercise			
22 Increase in breathing rate	Increases rate at which oxygen is taken into the lungs.		
	Oxygenated blood is pumped around the body at a faster rate. Carbon dioxide is removed at a faster rate.		
24 Increase in breath volume A greater volume of oxygen is taken in with each breath.			

Section 6a: Metabolism		
25 Metabolism	The sum of all the reactions in a cell or body . Some of these reactions	
25 Metabolisiii	require the energy released from respiration.	

Section 6b: Metabolic Reactions

- 26 Conversion of glucose to starch, cellulose or glycogen.
- 27 Formation of lipids from glycerol and fatty acids
- 28 Use of glucose and nitrates to make amino acids (plants only)
- 29 Respiration
- 30 Breakdown of proteins to urea