KNOWLEDGE

Chemistry Topic C6 Rates & Extent of Chemical Change

ORGANISER

Section 1: Rate of reaction Key terms		
Rate of reaction	Tells you how fast reactants turn into products	
Collision theory	Reactions can only take place when particles collide with enough energy.	
Activation energy	The minimum amount of energy particles need in order to react .	
Catalyst	A chemical (or enzyme) that increases the rate of reaction without being used up itself. They provide an alternative pathway for the reaction with a lower activation energy.	
Concentration	The number of particles in a certain volume .	
Surface area	The surface area of a solid is a measure of the total area that the surface of the solid occupies.	
Pressure The pressure of a gas is the force that the gas exerts on the walls of the container .		

Section 2: How can you find out the rate of reaction

There are two ways you can work out the rate of a chemical reaction. You can find out how quickly:

- The reactants are used up
- The products are made

There are three techniques that can be used:

Delivery tube carbon 1. Measuring the dioxide increasing volume of a gas given off. Hydrochloric calcium carbonate

e force that the gas exerts on the wans of the container.				
Section 3: Calculating rate of reaction				
Mean rate = <u>quantity of reactant used</u> or of reaction time	Mean rate = <u>quantity of product formed</u> of reaction time			
Typical graph when measuring reactants used	Typical graph when measuring products formed			
Reaction fastest	Reaction stopped			
Reaction stopped Time (s)	Reaction fastest Time (s)			

2. Measuring the decreasing mass of a reactant mixture.

3. Disappearing cross method: measuring the decreasing light passing through a solution.

Factor	Effect on Rate	Explanation
Concentration	Increasing the concentration increases the	Increases the frequency of a collision as
of reactants	rate of reaction.	particles are closer together .
Pressure of	Increasing the pressure increases the rate	Increases the frequency of a collision as
asses	of reaction	narticles are closer together

Section 4: Factors Affecting Rate of reaction

particles are closer together. rate of reaction.

Surface area of Increasing the surface area increases the Exposes more of the solid so that there is a solid reactants **greater** frequency of collisions occurring. Increasing the temperature increases the Particles collide more frequently and with Temperature rate of reaction. more energy. Lowers the activation energy by providing Catalyst Catalysts **increase** the rate of reaction. an alternate pathway.

KNOWLEDGE

Chemistry Topic C6 Rates & Extent of Chemical Change

ORGANISER

The reaction profile diagram of an uncatalysed and a catalysed exothermic reaction is shown below. The catalyst lowers the activation energy of the reaction.

-			
Section 5: Reversible Reactions key terrms			
Reversible reaction	A reaction in which the products can also form the reactants . Its symbol is \rightleftharpoons Shown as: A + B \rightleftharpoons C + D		
Exothermic	A reaction that transfers energy to the surroundings		
Endothermic	A reaction that takes in energy from the surroundings		
Equilibrium (HT)	Equilibrium is reached when the forward and backwards reactions occur at exactly the same rate. The amounts of reactants and products present remain constant. Requires a sealed container.		
Le Chatelier's Principle (HT)	When a change in conditions is introduced to a system at equilibrium, the position of equilibrium shifts so as to cancel out the change.		

Section 6:	Altering conditions (HT)
al	If the forward reaction is exothermic If the forward reaction is endothermic
t	An increase in temperature shifts An increase in temperature shifts
	the equilibrium in the backwards the equilibrium in the forwards
Changing	(endothermic) direction. Hence (endothermic) direction. Hence the
temperature	
(HT)	A decrease in temperature shifts A decrease in temperature shifts
	the equilibrium in the forwards the equilibrium in the backwards
	(exothermic) direction. Hence the (exothermic) direction. Hence the
	amount of products increases . amount of products decreases .
	• If we increase the concentration of one of the reactants, Le Chatelier's
	principle says that the equilibrium will shift in the direction that tends
	to reduce the concentration of this reactant.
	$A + B \rightleftharpoons C + D$
	• Increasing the concentration of reactant A, the only way the system can
Changing	reduce the concentration of A, is by some of A reacting with B. Hence the
concentration	on equilibrium moves in the forwards direction and more C & D are made.
) (HT)	
	• If the concentration of a reactant is increased , the equilibrium shits in
41	the forwards direction to decrease the amount of reactant, hence
	more products will be formed.
41	• If the concentration of a product is decreased, more products will be
╡├───	formed.
<u> </u>	For reactions of gases :
ı	• an increase in pressure causes the reaction to favour the side with the
	smaller number of molecules (as shown by the balanced symbol
ll Changing	equation for that reaction).
Changing pressure	• A decrease in pressure causes the reaction to favour the side with the larger number of molecules (as shown by the balanced symbol
- (HT)	equation for that reaction).
	e.g. $N_2O_{4(a)} \rightleftharpoons 2NO_{2(a)}$
f	• Decreasing the pressure in this reaction shifts the equilibrium to the
	side with the most gas molecules . Hence the equilibrium shifts in the

forwards direction.