| Biology 6: Inheritano | ce, Variation, Evolution | | Section 3: Gene | | | | | |------------------------------------|---|---|--|---|---|-------------------------------|----------| | · · | on 1a: Sexual and Asexual Reproduction | | 18 DNA | | II. DNA is a polymer made up of two stra | nds forming a c | louble | | | Reproduction involving the fusion of gametes . | | 10 5101 | | nakes up chromosomes. | | | | - | A sex cell that contains half the genetic | | 19 Gene | _ | section of DNA on a chromosome. Each of | - | a | | 17 (-3MOTO 1 | sperm and egg in animals, pollen and o | , | | | ence of amino acids, which make a prote | <u>ein.</u> | | | | The type of cell division that produces | | 20 Chromosome | | NA. Found in the nucleus. | | | | I I | produced from one original cell. Each cell | | 21 Genome | | tic material of that organism. | | | | | cell has half the genetic information of a body cell. | | 22 Allele | - 1 | ns of the same gene – dominant and rece | | | | | Fusion of gametes. Restores the full nu | • | 23 Dominant | | is always expressed. Only one copy is r | needed. | | | • | Reproduction involving only one parent | | 24 Recessive | | if two copies are present. | | | | | nformation so genetically identical clones | | 25 Homozygous | | a gene are the same (i.e. both are dominar | | | | • | nvolved. | rare produced. Only intends is | 26 Heterozygous | Both alleles for | a gene are different (i.e. one is dominant, | the other is rec | essive). | | | Cell division that produces two identical | daughter cells with the full amount of | 27 Genotype | The alleles pres | ent for a particular gene. | | | | ID MILOSIS | chromosomes. | adagnesi cons with the rail amount of | 28 Phenotype | The physical fea | ture expressed for a particular gene. | | | | Section 1b: Mitosis an | | | 29 Single gene | Some characterist | cics are controlled by only one gene e.g. fur | colour in mice, | colour | | | Mitosis | Meiosis | characteristics | blindness in huma | ans. | | | | 7 Number of daughter | T ITCOSIS | relesis | 30 Multiple gene | Most characteristi | cs are controlled by many genes e.g. height | | | | cells produced | 2 | 4 | characteristics | Most Characteristi | es are controlled by many genes e.g. height | | | | 8 Variation in cells | Genetically identical to each other and | | | | | | | | produced | parent cell | Different to each other and parent cell | Section 4: Gend | | | | | | | i i | Produce gametes for sexual | 31 Human | | contain 23 pairs of chromosomes. 22 | mother | | | 9 Purpose | Growth, repair, asexual reproduction | reproduction | Chromosomes | | acteristics only, one pair controls sex. | | | | O Number of | | | 32 Males | | different chromosomes – XY. | - (vv) | | | chromosomes | Full amount (pairs of chromosomes) | Half (single chromosomes) | 33 Females | Females have tw | o chromosomes that are the same - XX. | $\square(\mathbf{XX})$ | | | | es and Disadvantages of Different Ty | pes of Reproduction | | | | | | | | | Ivantages | £ | not
ed, | | \wedge | | | Produ | ices variation Offspring are | | ing
ne
ne wi | ffect
ffect
d with | | / \ | | | 11 Sexual more | likely to curvive changes to the Requ | ires a mate. | LEGEND C: functioning CFTR gene C: CFTR gene w | CC: Unaffecte
a CF carrier
Cc, cC: Unaffe
CF carrier
cc: Affected w | 24 Dunnatt annung abouting | $\langle \rangle$ | \ | | | onment and disease. | er way of producing offspring. | fund
CFTF | CF carr
carr
: Aff | 34 Punnett square showing
sex inheritance | $(\mathbf{X})(\mathbf{X})$ | egg cell | | | | ring are less likely to survive | 当 ü | 8 25 % | sex inneritance | (A) (C) |) -55 | | | | onmental changes or diseases. | | 1 | \ | | ٦ | | Section 2: Genetic Dis | - | | | | | $ \mathbf{X} \mathbf{X}$ | | | Section 2: Genetic Dis | | Custia Eibrasia | C | | | ^ ^ | | | | Polydactyly | Cystic Fibrosis | CF 8¢ | | | | J | | 13 Problem | Extra fingers and toes | Disorder of cell membranes. Causes | er's | | $\langle X \rangle \langle X \rangle \langle X \rangle$ | XX | . | | 14 Caused by | Downing who Hala | sticky mucus on lungs. | Moth | | father XY | | | | 14 Caused by | Dominant allele | Recessive allele | () () | | latrier 🔨 T | | ٦ | | 15 Genotype of people | PP or Pp | cc | | ll Ö | ~ YV Y | XYX | , | | with disease | <u>'</u> | | | | | | | | 16 Genotype of people | pp | CC or Cc | | + | | | | | without disease | | | C | O | | | | | 17 Does the disease have carriers? | No | Yes – genotype Cc | r- Reues | Father's | sperm cells | | | | carriers. | | I | | | openn cone | | | # **Biology 6: Inheritance, Variation, Evolution** | Section 5: Variation a | Section 5: Variation and Evolution Key Terms | | | |------------------------|---|--|--| | 35 Variation | The differences between organisms. Can be caused by genes (e.g. eye colour), the environment (e.g. scars) or both the environment and genes (e.g. weight). All variation in genes is caused by mutations . | | | | 36 Mutation | Mutations are changes in genes . Most have no effect on the phenotype. Occasionally mutations have a positive effect on phenotype and organisms with these mutations are more likely to survive. | | | | 37 Evolution | The change in the genes of a population over time . Occurs through natural selection. | | | | 38 Natural selection | The process by which the individuals best adapted to the environment survive and pass on their genes . | | | | 39 Speciation | Occurs when two populations are so different that they can no longer breed to produce fertile offspring . Two new species are formed. | | | # Section 5a: Natural Selection 40 There is variation in a population's alleles caused by mutations. #### Section 6: Selective Breeding | 44 Selective Breeding (Artificial Selection) | The process by which humans breed plants and animals for particular genetic characteristics. | |--|---| | 45 Inbreeding | Selective breeding can lead to 'inbreeding' where some breeds are particularly prone to disease or inherited defects . | Crops that have been produced by genetic engineering. ## **46 Process of selective breeding:** - 1. Choose parents with correct characteristics from the population. - Breed them together. - 3. Choose the offspring with the desired characteristics and breed them together. - Large or unusual flowers. - Continue over many generations. #### Domestic dogs with a gentle nature. 47 Examples of desired characteristics: Disease resistance in food crops. Animals which produce more meat or **Section 7: Genetic Engineering** A process which involves **modifying the genome** of an organism by **introducing a gene** from another organism to give a desired characteristic. Something that can carry a gene into another organism e.g. bacterial ## 51 Process of genetic engineering: 48 Genetic Engineering 49 GM Crop 50 Vector - 1. Genes are cut out by enzymes. - 2. The gene is **inserted into a vector** (either a bacterial plasmid or virus). - The vector is used to **insert the gene** into the required cells - Genes are transferred to the cells of animals, plants or microorganisms at an early stage in their development so that they develop with desired characteristics. # **52 Examples of genetic engineering:** - Bacterial cells have human **insulin gene** inserted into them so that they produce insulin for diabetics. - Plants that have had genes inserted that make them **resistant to** disease, insects or herbicides. # Biology 6: Inheritance, Variation, Evolution | Section 8: Evidence for evolution | | | |-----------------------------------|--|--| | | The preserved remains of an organism from many thousands of years ago. Formed by either gradual replacement by minerals, casts/impressions or preservation in places where there is no decay like amber | | | 54 Resistance bacteria | Bacteria can evolve and become antibiotic resistant. Bacteria sometimes develop random mutations, allowing them to survive an antibiotic, they reproduce increasing the population size of antibiotic resistant bacteria | | | | Section 9: Extinction | | |------------|-----------------------|--| | | 55 Reasons | Rapid environmental changes, new predators, new diseases, better competitor, | | DO REGOODS | 33 Reasons | catastrophic event e.g. volcanic eruption | | Section 10: Classification and evolutionary trees | | | | |---|--|--|--| | 56 Classification | Organising living organisms into groups | | | | 57 Carl Linnaeus system | Kingdom \rightarrow Phylum \rightarrow Class \rightarrow Order \rightarrow Family \rightarrow Genus \rightarrow Species | | | | 58 Carl Woese 3 domain system | Archaea, Bacteria, Eukartota are the main large groups which are then divided into smaller groups using the keyterms above (kingdom etc) | | | | 59 Binomial system | Give a 2 part name in Latin to every organism e.g. Homo sapiens | | | | 60 Evolutionary trees | Show common ancestors and relationships between species | | | | | Section | 11: | Structure | of | DNA | | |--|---------|-----|-----------|----|-----|--| |--|---------|-----|-----------|----|-----|--| | 61 DNA strands are polymers | made up of lots of repeating | |---------------------------------|------------------------------| | units called nucleotides | | - 62 Each nucleotide consists of one **sugar** molecule, one **phosphate** molecule and one **base** - 63 The sugar and phosphate molecules in the nucleotides form a **backbone** to the DNA strands. The sugar and phosphate molecules alternate. One of four different bases **A, T, C or G** joins to each sugar - 64 Each base links to a base on the opposite strand in the helix - 65 A always pairs up with T, and C always pairs up with G. This is called **complimentary base pairing**. - 66 It's the **order of bases** in a gene that decides the order of amino acids in a protein - 67 Each amino acid is **coded for** by a sequence of three bases in the gene - 68 The amino acids are joined together to make various proteins, depending on the order of the gene's bases | Section 12: Protein synthesis | | | |-------------------------------|---|--| | 69 Proteins | Examples include enzymes, hormones, structural proteins like collagen | | | | The first part of the process of making a protein. It takes place inside the cell nucleus. Transcription involves copying the DNA | | | | Takes place in the ribosomes that are found in the cytoplasm. This is where the messenger RNA is 'interpreted' and the new protein formed | | | 72 mRNA (HT) | Messenger RNA | | | 73 tRNA (HT) | Transfer RNA | | | Section 13: Mutations | | | | | |-----------------------|---|--|--|--| | 74 A mutation | A random change in the DNA | | | | | 75 Cause? | Exposure to certain substances/some radiation types | | | | | 76 Types? | Insertions, deletions, substitutions | | | | | Section 14: | Cloning plants and animals | | | |--------------------------|--|--|--| | 77 Clone | A genetically identical (to the parent) organism | | | | 78 Cuttings | Gardeners take cuttings to clone plants. Quick, cheap but only one clone at a time | | | | 79 Tissue
culture | Scientists clone plants by taking a few plant cell
medium with hormones. Mass production of c
to cuttings | | | | 80 Embryo
transplants | Sperm taken from a 'champion' male animal, us
embryo develops and is split many times before
embryos are implanted into host mothers result | any cells become specialised. Cloned | | | 81 Adult cell
cloning | Take an unfertilised egg cell and remove its nuccell is removed and inserted into this empty egg together and stimulates division. An embryo for a female host. A clone of the original adult cell information | g cell. An electric shock fused the two
ms and is implanted into he uterus of | | | | Negatives | Positives | | | 82 Issues | Reduces the gene pool Animal clones might not be as healthy as the normal ones Worry of human cloning in the future | Preserve endangered species Studying animal clones can lead to
better understanding of embryo
development | | ### **Biology 6: Inheritance, Variation, Evolution** e | Section 15: Darwin V Lar | Section 15: Darwin V Lamarck | | | | | |----------------------------|---|--|--|--|--| | 83 Darwin's idea | Evolution by natural selection | | | | | | 84 Controversy at the time | People did not believe Darwin at the time because: - It went against religious beliefs - DNA/genes/the mechanism of inheritance was not understood at the time - There was not enough evidence to convince other scientists | | | | | | 85 Lamarck's idea | Evolution by acquired characteristics Organisms that use a characteristic a lot during its lifetime would become more developed e.g. a rabbit using its legs a lot to run would become longer Then the organisms offspring would inherit this characteristic e.g. the rabbits offspring would also have longer legs | | | | | | Section 16: Speciation | | |------------------------|---| | 86 Species | A group of similar organisms that can reproduce to give fertile offspring | | 87 Speciation | The development of a new species | 89 genetic variation (in each population) or different / new alleles or mutations occur 90 there are different environments / conditions in these two separate areas 91 natural selection occurs or some phenotypes survived or some genotypes survived 92 (favourable) alleles / genes / mutations passed on (in each population) 93 eventually two types cannot interbreed successfully chromosomes / DNA / genes not seen / discovered / known at the time Mendel's work was rejected at the time because: he was just a monk (not a scientist) other theories accepted at the time 97 Rejection inheritance of each characteristic is determined by 'units' that are passed on from parents to offspring