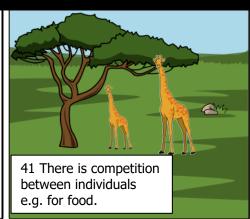
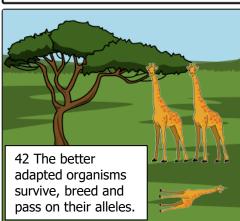
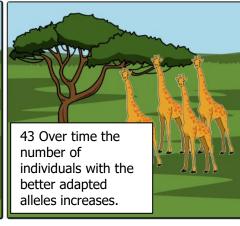
Biology 6: Inheritano	ce, Variation, Evolution		Section 3: Gene				
· ·	on 1a: Sexual and Asexual Reproduction		18 DNA		II. DNA is a polymer made up of two stra	nds forming a c	louble
	Reproduction involving the fusion of gametes .		10 5101		nakes up chromosomes.		
-	A sex cell that contains half the genetic		19 Gene	_	section of DNA on a chromosome. Each of	-	a
17 (-3MOTO 1	sperm and egg in animals, pollen and o	, , , , , , , , , , , , , , , , , , , ,			ence of amino acids, which make a prote	<u>ein.</u>	
	The type of cell division that produces		20 Chromosome		NA. Found in the nucleus.		
I I	produced from one original cell. Each cell		21 Genome		tic material of that organism.		
	cell has half the genetic information of a body cell.		22 Allele	- 1	ns of the same gene – dominant and rece		
	Fusion of gametes. Restores the full nu	•	23 Dominant		is always expressed. Only one copy is r	needed.	
•	Reproduction involving only one parent		24 Recessive		if two copies are present.		
	nformation so genetically identical clones		25 Homozygous		a gene are the same (i.e. both are dominar		
•	nvolved.	rare produced. Only intends is	26 Heterozygous	Both alleles for	a gene are different (i.e. one is dominant,	the other is rec	essive).
	Cell division that produces two identical	daughter cells with the full amount of	27 Genotype	The alleles pres	ent for a particular gene.		
ID MILOSIS	chromosomes.	adagnesi cons with the rail amount of	28 Phenotype	The physical fea	ture expressed for a particular gene.		
Section 1b: Mitosis an			29 Single gene	Some characterist	cics are controlled by only one gene e.g. fur	colour in mice,	colour
	Mitosis	Meiosis	characteristics	blindness in huma	ans.		
7 Number of daughter	T ITCOSIS	relesis	30 Multiple gene	Most characteristi	cs are controlled by many genes e.g. height		
cells produced	2	4	characteristics	Most Characteristi	es are controlled by many genes e.g. height		
8 Variation in cells	Genetically identical to each other and						
produced	parent cell	Different to each other and parent cell	Section 4: Gend				
	i i	Produce gametes for sexual	31 Human		contain 23 pairs of chromosomes. 22	mother	
9 Purpose	Growth, repair, asexual reproduction	reproduction	Chromosomes		acteristics only, one pair controls sex.		
O Number of			32 Males		different chromosomes – XY.	- (vv)	
chromosomes	Full amount (pairs of chromosomes)	Half (single chromosomes)	33 Females	Females have tw	o chromosomes that are the same - XX.	$\square(\mathbf{XX})$	
	es and Disadvantages of Different Ty	pes of Reproduction					
		Ivantages	£	not ed,		\wedge	
Produ	ices variation Offspring are		ing ne ne wi	ffect ffect d with		/ \	
11 Sexual more	likely to curvive changes to the Requ	ires a mate.	LEGEND C: functioning CFTR gene C: CFTR gene w	CC: Unaffecte a CF carrier Cc, cC: Unaffe CF carrier cc: Affected w	24 Dunnatt annung abouting	$\langle \rangle$	\
	onment and disease.	er way of producing offspring.	fund CFTF	CF carr carr : Aff	34 Punnett square showing sex inheritance	$(\mathbf{X})(\mathbf{X})$	egg cell
		ring are less likely to survive	当 ü	8 25 %	sex inneritance	(A) (C)) -55
		onmental changes or diseases.		1	\		٦
Section 2: Genetic Dis	-					$ \mathbf{X} \mathbf{X}$	
Section 2: Genetic Dis		Custia Eibrasia	C			^ ^	
	Polydactyly	Cystic Fibrosis	CF 8¢				J
13 Problem	Extra fingers and toes	Disorder of cell membranes. Causes	er's		$\langle X \rangle \langle X \rangle \langle X \rangle$	XX	.
14 Caused by	Downing who Hala	sticky mucus on lungs.	Moth		father XY		
14 Caused by	Dominant allele	Recessive allele	() ()		latrier 🔨 T		٦
15 Genotype of people	PP or Pp	cc		ll Ö	~ YV Y	XYX	,
with disease	<u>'</u>						
16 Genotype of people	pp	CC or Cc		+			
without disease			C	O			
17 Does the disease have carriers?	No	Yes – genotype Cc	r- Reues	Father's	sperm cells		
carriers.		I			openn cone		

Biology 6: Inheritance, Variation, Evolution


Section 5: Variation a	Section 5: Variation and Evolution Key Terms		
35 Variation	The differences between organisms. Can be caused by genes (e.g. eye colour), the environment (e.g. scars) or both the environment and genes (e.g. weight). All variation in genes is caused by mutations .		
36 Mutation	Mutations are changes in genes . Most have no effect on the phenotype. Occasionally mutations have a positive effect on phenotype and organisms with these mutations are more likely to survive.		
37 Evolution	The change in the genes of a population over time . Occurs through natural selection.		
38 Natural selection	The process by which the individuals best adapted to the environment survive and pass on their genes .		
39 Speciation	Occurs when two populations are so different that they can no longer breed to produce fertile offspring . Two new species are formed.		


Section 5a: Natural Selection


40 There is variation in a

population's alleles

caused by mutations.

Section 6: Selective Breeding

44 Selective Breeding (Artificial Selection)	The process by which humans breed plants and animals for particular genetic characteristics.
45 Inbreeding	Selective breeding can lead to 'inbreeding' where some breeds are particularly prone to disease or inherited defects .

Crops that have been produced by genetic engineering.

46 Process of selective breeding:

- 1. Choose parents with correct characteristics from the population.
- Breed them together.
- 3. Choose the offspring with the desired characteristics and breed them together.
 - Large or unusual flowers.
- Continue over many generations.

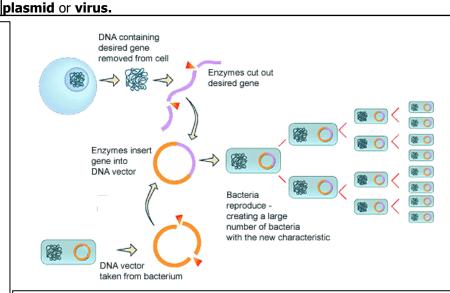
Domestic dogs with a gentle nature.

47 Examples of desired characteristics: Disease resistance in food crops.

Animals which produce more meat or

Section 7: Genetic Engineering A process which involves **modifying the genome** of an organism by **introducing a gene** from another organism to give a desired characteristic.

Something that can carry a gene into another organism e.g. bacterial


51 Process of genetic engineering:

48 Genetic Engineering

49 GM Crop

50 Vector

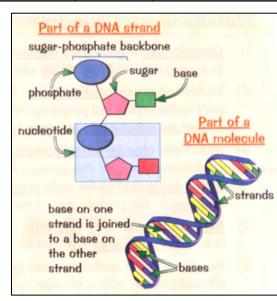
- 1. Genes are cut out by enzymes.
- 2. The gene is **inserted into a vector** (either a bacterial plasmid or virus).
- The vector is used to **insert the gene** into the required cells
- Genes are transferred to the cells of animals, plants or microorganisms at an early stage in their development so that they develop with desired characteristics.

52 Examples of genetic engineering:

- Bacterial cells have human **insulin gene** inserted into them so that they produce insulin for diabetics.
- Plants that have had genes inserted that make them **resistant to** disease, insects or herbicides.

Biology 6: Inheritance, Variation, Evolution

Section 8: Evidence for evolution		
	The preserved remains of an organism from many thousands of years ago. Formed by either gradual replacement by minerals, casts/impressions or preservation in places where there is no decay like amber	
54 Resistance bacteria	Bacteria can evolve and become antibiotic resistant. Bacteria sometimes develop random mutations, allowing them to survive an antibiotic, they reproduce increasing the population size of antibiotic resistant bacteria	


	Section 9: Extinction	
	55 Reasons	Rapid environmental changes, new predators, new diseases, better competitor,
DO REGOODS	33 Reasons	catastrophic event e.g. volcanic eruption

Section 10: Classification and evolutionary trees			
56 Classification	Organising living organisms into groups		
57 Carl Linnaeus system	Kingdom \rightarrow Phylum \rightarrow Class \rightarrow Order \rightarrow Family \rightarrow Genus \rightarrow Species		
58 Carl Woese 3 domain system	Archaea, Bacteria, Eukartota are the main large groups which are then divided into smaller groups using the keyterms above (kingdom etc)		
59 Binomial system	Give a 2 part name in Latin to every organism e.g. Homo sapiens		
60 Evolutionary trees	Show common ancestors and relationships between species		

	Section	11:	Structure	of	DNA	
--	---------	-----	-----------	----	-----	--

61 DNA strands are polymers	made up of lots of repeating
units called nucleotides	

- 62 Each nucleotide consists of one **sugar** molecule, one **phosphate** molecule and one **base**
- 63 The sugar and phosphate molecules in the nucleotides form a **backbone** to the DNA strands. The sugar and phosphate molecules alternate. One of four different bases **A, T, C or G** joins to each sugar
- 64 Each base links to a base on the opposite strand in the helix
- 65 A always pairs up with T, and C always pairs up with G. This is called **complimentary base pairing**.
- 66 It's the **order of bases** in a gene that decides the order of amino acids in a protein
- 67 Each amino acid is **coded for** by a sequence of three bases in the gene
- 68 The amino acids are joined together to make various proteins, depending on the order of the gene's bases

Section 12: Protein synthesis		
69 Proteins	Examples include enzymes, hormones, structural proteins like collagen	
	The first part of the process of making a protein. It takes place inside the cell nucleus. Transcription involves copying the DNA	
	Takes place in the ribosomes that are found in the cytoplasm. This is where the messenger RNA is 'interpreted' and the new protein formed	
72 mRNA (HT)	Messenger RNA	
73 tRNA (HT)	Transfer RNA	

Section 13: Mutations				
74 A mutation	A random change in the DNA			
75 Cause?	Exposure to certain substances/some radiation types			
76 Types?	Insertions, deletions, substitutions			

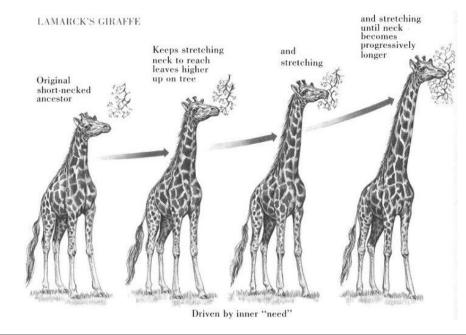
Section 14:	Cloning plants and animals		
77 Clone	A genetically identical (to the parent) organism		
78 Cuttings	Gardeners take cuttings to clone plants. Quick, cheap but only one clone at a time		
79 Tissue culture	Scientists clone plants by taking a few plant cell medium with hormones. Mass production of c to cuttings		
80 Embryo transplants	Sperm taken from a 'champion' male animal, us embryo develops and is split many times before embryos are implanted into host mothers result	any cells become specialised. Cloned	
81 Adult cell cloning	Take an unfertilised egg cell and remove its nuccell is removed and inserted into this empty egg together and stimulates division. An embryo for a female host. A clone of the original adult cell information	g cell. An electric shock fused the two ms and is implanted into he uterus of	
	Negatives	Positives	
82 Issues	 Reduces the gene pool Animal clones might not be as healthy as the normal ones Worry of human cloning in the future 	 Preserve endangered species Studying animal clones can lead to better understanding of embryo development 	

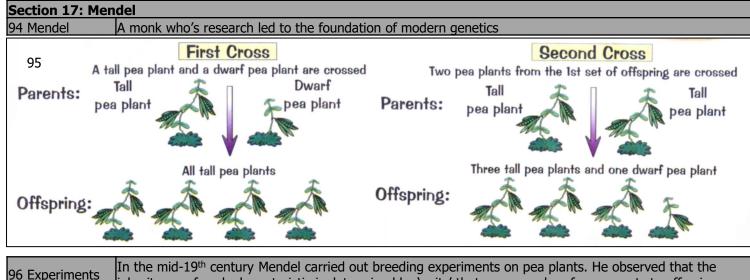
Biology 6: Inheritance, Variation, Evolution

e

Section 15: Darwin V Lar	Section 15: Darwin V Lamarck				
83 Darwin's idea	Evolution by natural selection				
84 Controversy at the time	People did not believe Darwin at the time because: - It went against religious beliefs - DNA/genes/the mechanism of inheritance was not understood at the time - There was not enough evidence to convince other scientists				
85 Lamarck's idea	 Evolution by acquired characteristics Organisms that use a characteristic a lot during its lifetime would become more developed e.g. a rabbit using its legs a lot to run would become longer Then the organisms offspring would inherit this characteristic e.g. the rabbits offspring would also have longer legs 				

Section 16: Speciation	
86 Species	A group of similar organisms that can reproduce to give fertile offspring
87 Speciation	The development of a new species


89 genetic variation (in each population) or different / new alleles or mutations occur


90 there are different environments / conditions in these two separate areas

91 natural selection occurs or some phenotypes survived or some genotypes survived

92 (favourable) alleles / genes / mutations passed on (in each population)

93 eventually two types cannot interbreed successfully

chromosomes / DNA / genes not seen / discovered / known at the time

Mendel's work was rejected at the time because:

he was just a monk (not a scientist)

other theories accepted at the time

97 Rejection

inheritance of each characteristic is determined by 'units' that are passed on from parents to offspring