KNOWLEDGE # Chemistry Topic C1 Atomic Structure and Periodic Table ### **ORGANISER** | Section 1: Key Te | rms | | | |-------------------|--|--|--| | Atom | The smallest part of an element that can still be recognised as the element. No overall electrical charge . Very small , radius of 0.1nm. | | | | Element | An element contains only one type of atom . Found on the Periodic Table There are about 100 elements. | | | | Compound | Two or more elements chemically bonded with each other. | | | | Mixture | Contains two or more elements or compounds not chemically bonded . Can be separated using physical methods e.g. by filtration crystallisation, distillation and chromatography. | | | | Filtration | A process that separates mixtures of insoluble solids and liquids . | | | | Crystallisation | A process that separates a soluble solid from a solvent by evaporating the liquid to leave crystals. | | | | Distillation | A process that separates a mixture of liquids based on their boiling points . | | | | Chromatography | A process that separates mixtures by how quickly they move through a stationary phase (e.g. paper chromatography) | | | | Isotope | An atom of the same element with same number of protons bu different numbers of neutrons. | | | | | An average value of mass that takes account of the abundance of the isotopes of the element. | | | #### Thompson's plum pudding Plum Pudding shows that the atom is a ball of positive charge with negative electrons embedded in it. Was incorrect. Rutherford's alpha particle scattering Nuclear Model experiment found a central area of positive charge. The nuclear model has a **positive nucleus** and electrons in shells. Chadwick later discovered neutrons. **Bohr** discovered the arrangement of electrons in shells. Section 2: Development of Atomic Model **Mass number** – the total number of **protons** and **neutrons** **Atomic number** – the **number of protons** (the number of electrons is the same in an atom) **Electron configuration**— Electrons fill the first energy level (shell) first. Maximum electrons: **2 electrons in first shell, 8 in the 2nd, 8 in the 3rd.** | Section 3: Properties of Sub-Atomic Particles | | | | | | | |---|---------------|--------|--------------------|--|--|--| | Sub-atomic particle | Mass | Charge | Position in Atom | | | | | Proton | 1 | +1 | Nucleus | | | | | Neutron | 1 | 0 | Nucleus | | | | | Electron | Very
small | -1 | Orbiting in shells | | | | ## **KNOWLEDGE** # **Chemistry Topic C1 Atomic Structure and Periodic Table** ### **ORGANISER** | Section 4: Periodic Table | | | | | |---------------------------|--|--|--|--| | Group | Elements in the same vertical column are in the same group. Elements in the same group have the same number of electrons in their outer shell , and therefore similar properties . | | | | | Period | Elements in the same horizontal row . The atomic number increases by one moving across the period from left to right. | | | | | Metal | Elements that react to form positive ions (except Hydrogen). Left and centre of periodic table | | | | | Non-Metal | Elements that react to form negative ions. Right hand side of periodic table. | | | | | Mendeleev | Was able to make a relatively accurate periodic table by leaving gaps for undiscovered elements and re-arranging some elements (Mendeleev could only measure relative atomic mass, not atomic number). Hence he arranged the elements in order of mass number and predicted the properties of the elements in the gaps | | | | | Section 5: Groups of the Periodic Table | | | | | | |---|---|--|---|--|--| | Sub-atomic particle | Properties | Trends | Reactions | | | | Group 0
(Noble Gases) | Unreactive and do not form diatomic molecules. | Boiling point increases going down the group. | Very unreactive because they have full outer shells. | | | | Group 1 (Alkali
Metals) | their one outermost
electron.
Always form ionic | going down the group. Melting points and boiling point decrease | With water: Metal + water → Metal hydroxide + hydrogen With oxygen: Metal + oxygen → Metal oxide With chlorine: Metal + chlorine → Metal chloride | | | | Group 7
(Halogens) | Poor conductors of heat and electricity. | going down the group. Boiling point and melting point increase | A more reactive halogen can displace a less reactive halogen from a solution of its salt. Chlorine + sodium bromide → sodium chloride + bromine | | | Elements in the modern periodic table are arranged by atomic (proton) number. Group – Vertical column Period – Horizontal Row Metals are on the left, nonmetals on the right.