KNOWLEDGE # **Chemistry Topic C2 Structure and bonding** # **ORGANISER** ## **Section 1: Bonding Key Terms** | Ion | A charged particle formed when atoms lose or gain electrons . | | | |--------------------------|---|--|--| | Ionic bond | An electrostatic attraction between two oppositely charged ions (metal and non-metal). | | | | Electrostatic attraction | The attraction between a negatively charged particle and a positively charged particle. | | | | Metals | In ionic bonding, metals lose electrons to become positively-charged ions. | | | | Non-metals | In ionic bonding, non-metals gain electrons to become negatively-charged ions. Located on the right hand side of the periodic table. A large regular 3D structure that contains millions of bonds. | | | | Giant lattice | | | | | Covalent
bond | A bond formed when non-metals share electrons . An electrostatic attraction between the positively charged nuclei of the bonded atoms and the electrons shared between them. | | | | Molecule | A small group of atoms held together with covalent bonds . Not charged . | | | | Polymer | Very large covalently bonded molecules with many repeating units . | | | | Metallic
bonding | The bonding of a metal consists of a lattice of positive ions surrounded by a sea of delocalised electrons . The metallic bond is the Electrostatic attraction between the positive ions and the delocalised electrons. | | | A mixture of two or more elements, at least one of which is a metal. E.g. steel is a mixture of iron and carbon Alloy ## Section 2: Simple Covalent Molecules | | erty | Reason | |---|---|--| | | Low melting and
boiling points (usually
gases or liquids) | There are only weak intermolecular forces between the molecules which don't need much energy to overcome these forces. | | | Do not conduct
elec ^{tricity} | Covalent molecules are not charged & have no free moving electrons. | | 1 | | | **Properties of Diamond** Covalent dot and cross diagrams show which atoms the electrons have come from but don't show relative size of atoms or their arrangement in space. ### **Section 4: Small Carbon-Based Structures** Fullerene ## **Section 3: Giant Covalent Structures Made of Carbon** | In Giant covalent compounds, all the | |---| | s are bonded via strong covalent | | In Giant covalent compounds, all the s are bonded via strong covalent atom as in a giant lattice structure. | | | In Diamond, each C is bonded to 4 other carbons in a tetrahedral arrangement. | Diamona | Graphite contains | |---|--------------------------| | $\Rightarrow \rightarrow \Leftrightarrow$ | layers of hexagons | | ~ _ >_> | with each carbon | | $\Leftrightarrow \to \Leftrightarrow$ | having 3 bonds. | | $\Longrightarrow\Longrightarrow$ | The extra | | ->> | electrons become | | | delocalised | | | between the | | Graphite | layers. | | | | | i l | Property | Reason | | |-----|-----------------------------------|---|--| | | Doesn't
conduct
electricity | Diamond doesn't contain delocalised electrons or ions. | | | | Very hard | Each carbon bonds to 4 other carbon atoms with strong covalent bonds to form a lattice | | | | High
melting
point | A large amount of energy is needed to overcome all the strong covalent bonds in the lattice. | | | | _ | s of Graphite | | | | Property | Reason | | | | Conducts electricity | The delocalised electrons are free to move and carry charge through the structure. | | | | Soft and slippery | Only weak intermolecular forces exist between layers, so layers can slide | | | OI | | Structure | Properties | Uses | |------------|--------------------|---|--|---| | | Fullerene | Hollow- shaped , cage like structures and tubes which also contain chexagonal rings. E.g. Buckminsterfulle rene (C ₆₀) | ontain other | Drug delivery,
lubricants,
catalysts (large
surface to
volume ratio)
and in
electronics | | 3 . | Graphene | A single layer | Very strong & light. Has delocalised electrons so it is able to conduct electricity. | Electronics,
composites. | | es | Carbon
nanotube | tubes of carbon | Very strong, light and flexible . Has delocalised | Nanotechnology
, electronics,
reinforcing (e.g.
tennis rackets). | # **KNOWLEDGE** # **Chemistry Topic C2 Structure and bonding** ## **ORGANISER** ## **Section 5: Ionic Bonding** When a metal and a non-metal react together, the metal atom loses electrons and becomes a positive ion. The non-metal atom gains electrons and becomes a negative ion. The ionic bond is a strong electrostatic force of attraction between these oppositely charged ions. | Property | Reason | |---|--| | High melting
point and boiling
points | Because it takes a lot of energy to overcome the many strong ionic bonds in the lattice. There is a strong electrostatic force between the positive and negative ions in the giant lattice . | | IEIECTTICITY WITETT | Ions are able to move so there is a flow of charged ions (current). | | Do not conduct electricity when solid | Ions are in fixed positions so cannot flow. | #### Section 6: Polymers made up of many repeating units called **monomers**. Polymers are usu hecause the **inte** A polymer is a substance made from **very large molecules** Polymers are usually solid because the intermolecular forces between polymer molecules are relatively strong. ## **Section 7: Metallic Bonding** A **pure metal** consists of a lattice of **positive ions** surrounded by a **sea of delocalised electrons**. | | Properties of Pure Metals | | | |------------------|---------------------------|--|----| | | Property | Reason | | | | High melting
points | Strong electrostatic forces between the positive ions and delocalised electrons. Requires a large amount of energy to overcome. | 16 | | | | the delocalised electrons are free to move and carry a charge. | c | | If ondict heat I | | The delocalised electrons are free to move and transfer thermal energy through the structure. | 5 | | g
d | Манеаріе | The layers are able to slide over each other so the metal can be bent and shaped. The attraction between the positive ions and delocalised electrons prevents the metal from shattering. | | Allov Alloys are harder than pure metals because the different sized atoms distort the layers making it harder for them to slide. **Steel** is an alloy consisting of **Iron** and **carbon** #### Section 8: Nanoparticles (triple only) Nanoscience is the study of **small particles** that are between **1 and 100 nanometres** in size. Nanoparticles may have properties **different** from those for the same materials in bulk because of their **high surface area to volume ratio**. Nanoparticles may result in smaller quantities of materials e.g. catalysts being needed for industry. | Uses | Advantage | | |--|--|--| | Sun cream (Zinc
oxide
nanoparticles) | Nanoparticles
more effective
at blocking suns
rays. | Nanoparticles are smaller
than skin cells so can go
through the skin into the
bloodstream,
Unpredictable effect on
our cells? | | Silver
nanoparticles
used in fridges,
antimicrobial
dressings. | Inhibit growth of microorganisms (protect against bacteria) | Scientists are also worried about nanoparticles entering the environment and affecting aquatic life | ## **Section 9: States of matter** Solid State symbol (s) Liquid State symbol (I) Gas State symbol (g)