# **KNOWLEDGE**

# **Chemistry Topic C2 Structure and bonding**

# **ORGANISER**

## **Section 1: Bonding Key Terms**

| Ion                      | A <b>charged particle</b> formed when atoms lose or gain <b>electrons</b> .                                                                                                                                                           |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ionic bond               | An electrostatic attraction between two oppositely charged ions (metal and non-metal).                                                                                                                                                |  |  |
| Electrostatic attraction | The attraction between a negatively charged particle and a positively charged particle.                                                                                                                                               |  |  |
| Metals                   | In ionic bonding, metals lose electrons to become positively-charged ions.                                                                                                                                                            |  |  |
| Non-metals               | In ionic bonding, non-metals gain electrons to become negatively-charged ions. Located on the right hand side of the periodic table.  A large regular 3D structure that contains millions of bonds.                                   |  |  |
| Giant lattice            |                                                                                                                                                                                                                                       |  |  |
| Covalent<br>bond         | A bond formed when <b>non-metals share electrons</b> . An electrostatic attraction between the positively charged nuclei of the bonded atoms and the electrons shared between them.                                                   |  |  |
| Molecule                 | A <b>small group of atoms</b> held together with <b>covalent bonds</b> . <b>Not charged</b> .                                                                                                                                         |  |  |
| Polymer                  | <b>Very large covalently bonded</b> molecules with <b>many repeating units</b> .                                                                                                                                                      |  |  |
| Metallic<br>bonding      | The bonding of a metal consists of a lattice of <b>positive ions</b> surrounded by a <b>sea of delocalised electrons</b> . The metallic bond is the Electrostatic attraction between the positive ions and the delocalised electrons. |  |  |

A mixture of two or more elements, at least one of which is a metal. E.g.

steel is a mixture of iron and carbon

Alloy

## Section 2: Simple Covalent Molecules

|   | erty                                                            | Reason                                                                                                                               |
|---|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|   | Low melting and<br>boiling points (usually<br>gases or liquids) | There are only <b>weak intermolecular forces between the molecules</b> which <b>don't need much energy</b> to overcome these forces. |
|   | Do not conduct<br>elec <sup>tricity</sup>                       | Covalent molecules are <b>not charged</b> & have no free moving electrons.                                                           |
| 1 |                                                                 |                                                                                                                                      |

**Properties of Diamond** 



Covalent dot and cross diagrams show which atoms the electrons have come from but don't show relative size of atoms or their arrangement in space.



### **Section 4: Small Carbon-Based Structures**





Fullerene

## **Section 3: Giant Covalent Structures Made of Carbon**

| In Giant covalent compounds, all the                                                                        |
|-------------------------------------------------------------------------------------------------------------|
| s are bonded via strong covalent                                                                            |
| In Giant covalent compounds, all the s are bonded via strong covalent atom as in a giant lattice structure. |
|                                                                                                             |



In Diamond, each C is bonded to 4 other carbons in a tetrahedral arrangement.

| Diamona                                   | <b>Graphite</b> contains |
|-------------------------------------------|--------------------------|
| $\Rightarrow \rightarrow \Leftrightarrow$ | layers of hexagons       |
| ~ <del>_</del> >_>                        | with each carbon         |
| $\Leftrightarrow \to \Leftrightarrow$     | having 3 bonds.          |
| $\Longrightarrow\Longrightarrow$          | The extra                |
| <b>-&gt;&gt;</b>                          | electrons become         |
|                                           | delocalised              |
|                                           | between the              |
| Graphite                                  | layers.                  |
|                                           |                          |

| i l | <b>Property</b>                   | Reason                                                                                              |  |
|-----|-----------------------------------|-----------------------------------------------------------------------------------------------------|--|
|     | Doesn't<br>conduct<br>electricity | Diamond doesn't contain delocalised electrons or ions.                                              |  |
|     | Very hard                         | Each carbon bonds to 4 other carbon atoms with strong covalent bonds to form a lattice              |  |
|     | High<br>melting<br>point          | A <b>large amount of energy</b> is needed to overcome all the strong covalent bonds in the lattice. |  |
|     | _                                 | s of Graphite                                                                                       |  |
|     | <b>Property</b>                   | Reason                                                                                              |  |
|     | Conducts electricity              | The delocalised electrons are <b>free to move</b> and <b>carry charge</b> through the structure.    |  |
|     | Soft and slippery                 | Only weak intermolecular forces exist between layers, so layers can slide                           |  |

| OI         |                    | Structure                                                                                                                                 | Properties                                                                           | Uses                                                                                                      |
|------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|            | Fullerene          | <b>Hollow- shaped</b> , cage like structures and tubes which also contain chexagonal rings. E.g. Buckminsterfulle rene (C <sub>60</sub> ) | ontain other                                                                         | Drug delivery,<br>lubricants,<br>catalysts (large<br>surface to<br>volume ratio)<br>and in<br>electronics |
| <b>3</b> . | Graphene           | A single layer                                                                                                                            | Very strong & light. Has delocalised electrons so it is able to conduct electricity. | Electronics,<br>composites.                                                                               |
| es         | Carbon<br>nanotube | <b>tubes</b> of carbon                                                                                                                    | Very <b>strong, light</b> and <b>flexible</b> . Has <b>delocalised</b>               | Nanotechnology<br>, electronics,<br>reinforcing (e.g.<br>tennis rackets).                                 |

# **KNOWLEDGE**

# **Chemistry Topic C2 Structure and bonding**

## **ORGANISER**

## **Section 5: Ionic Bonding**



When a metal and a non-metal react together, the metal atom loses electrons and becomes a positive ion. The non-metal atom gains electrons and becomes a negative ion. The ionic bond is a strong electrostatic force of attraction between these oppositely charged ions.

| Property                                    | Reason                                                                                                                                                                                                                   |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High melting<br>point and boiling<br>points | Because it takes a lot of energy to overcome the many strong ionic bonds in the lattice. There is a <b>strong</b> electrostatic force between the <b>positive</b> and <b>negative ions</b> in the <b>giant lattice</b> . |
| IEIECTTICITY WITETT                         | Ions are able to move so there is a flow of charged ions (current).                                                                                                                                                      |
| Do not conduct electricity when solid       | Ions are in fixed positions so cannot flow.                                                                                                                                                                              |

#### Section 6: Polymers



made up of many repeating units called **monomers**.

Polymers are usu hecause the **inte** 

A polymer is a substance made from **very large molecules** 

Polymers are usually solid because the intermolecular forces between polymer molecules are relatively strong.

## **Section 7: Metallic Bonding**



A **pure metal** consists of a lattice of **positive ions** surrounded by a **sea of delocalised electrons**.

|                  | Properties of Pure Metals |                                                                                                                                                                                                        |    |
|------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                  | <b>Property</b>           | Reason                                                                                                                                                                                                 |    |
|                  | High melting<br>points    | Strong electrostatic forces between the positive ions and delocalised electrons. Requires a large amount of energy to overcome.                                                                        | 16 |
|                  |                           | the delocalised electrons are free to move and carry a charge.                                                                                                                                         | c  |
| If ondict heat I |                           | The <b>delocalised electrons</b> are free to <b>move and transfer thermal energy</b> through the structure.                                                                                            | 5  |
| g<br>d           | Манеаріе                  | The <b>layers</b> are able to <b>slide over each other</b> so the metal can be bent and shaped. The attraction between the positive ions and delocalised electrons prevents the metal from shattering. |    |



Allov

Alloys are harder than pure metals because the different sized atoms distort the layers making it harder for them to slide.

**Steel** is an alloy consisting of **Iron** and **carbon** 

#### Section 8: Nanoparticles (triple only)

Nanoscience is the study of **small particles** that are between **1 and 100 nanometres** in size.

Nanoparticles may have properties **different** from those for the same materials in bulk because of their **high surface area to volume ratio**.

Nanoparticles may result in smaller quantities of materials e.g. catalysts being needed for industry.

| Uses                                                                       | Advantage                                                    |                                                                                                                                              |
|----------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Sun cream (Zinc<br>oxide<br>nanoparticles)                                 | Nanoparticles<br>more effective<br>at blocking suns<br>rays. | Nanoparticles are smaller<br>than skin cells so can go<br>through the skin into the<br>bloodstream,<br>Unpredictable effect on<br>our cells? |
| Silver<br>nanoparticles<br>used in fridges,<br>antimicrobial<br>dressings. | Inhibit growth of microorganisms (protect against bacteria)  | Scientists are also worried about nanoparticles entering the environment and affecting aquatic life                                          |

## **Section 9: States of matter**



Solid State symbol (s)



Liquid State symbol (I)



Gas State symbol (g)