Paper 1 Physics Equations to Remember – you have to learn and remember these equations

GCSE Physics (8463) (HT)

GCSE Combined Science: Trilogy (8464) (HT)

Energy Topic

#	Written Form	Formula	Units
1	kinetic energy = $\frac{1}{2}$ × mass × (velocity) ²	$[E_k = \frac{1}{2}mv^2]$	E_k Joules (J)m kilograms (kg)v metres per second (m/s)
2	Gravitational Potential Energy = mass × gravitational field strength × height	[E _p = mgh]	 E_p Joules (J) m kilograms (kg) g Newtons per kilogram (N/kg) h metres (m)
3	power = energy transferred ÷ time	[P = E/t]	P Watts (W)E Joules (J)t seconds (s)
4	power = work done ÷ time	[P = W/t]	P Watts (W)W Joules (J)t seconds (s)
5	energy transferred = power × time	E = Pt	E Joules (J) P Watts (W) t seconds (s)
6	$Efficiency = \frac{Useful\ Energy\ Out}{Total\ Energy\ In}\ (\times\ 100\%)$		
7	$Efficiency = \frac{Useful\ Power\ Out}{Total\ Power\ In} \ (\times\ 100\%)$		

Electricity Topic

#	Written Form	Formula	Units
			Q Coulombs (C)
1	Charge = Current × Time	[Q = It]	/ Amps (A)
			t seconds (s)
			V Volts (V)
2	Potential Difference = Current × Resistance	[V = IR]	/ Amps (A)
			R Ohms (Ω)
3	Total Resistance in Series = Sum of all Resistors	$[R_{total} = R_1 + R_2]$	$R_{(all)}$ Ohms (Ω)
	Power = Potential Difference × Current	[P = VI]	P Watts (W)
4			V Volts (V)
			/ Amps (A)
5	Power = $(Current)^2 \times Resistance$	$[P = I^2 R]$	P Watts (W)
			/ Amps (A)
			R Ohms (Ω)
	Energy Transferred = Power × Time	[E = Pt]	E Joules (J)
6			P Watts (W)
			t seconds (s)
7	Energy Transferred = Charge × Potential Difference	[E = QV]	E Joules (J)
			Q Coulombs (C)
			V Volts (V)

Particles Topic

#	Written Form	Formula	Units
1	Density = Mass ÷ Volume	[ρ = m/V]	 ρ kilograms per cubic metre (kg/m³) m kilograms (kg) V cubic metres (m³)

Atomic Structure Topic

No specific equations for this topic but you will be expected to be able to calculate the age of material from its half-life and current radioactivity.

Equations that are Provided – you don't have to remember these, but must be able to use them

GCSE Physics (8463) (HT)

GCSE Combined Science: Trilogy (8464) (HT)

Energy Topic

#	Written Form	Formula	Units
1		[E _e = ½ke²]	E _e Joules (J)
	elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$		k Newtons per metre (N/m)
			e extension (m)
2	change in thermal energy – mass y specific heat canacity y temperature	ΔE Joules (J) m kilograms (kg) c Joules per kilogram per degree Celsius (J/kg°C) $\Delta \theta$ degrees Celsius (°C)	ΔE Joules (J)
			m kilograms (kg)
	change in thermal energy = mass × specific heat capacity × temperature		c Joules per kilogram per
	change		
			Δθ degrees Celsius (°C)

Electricity Topic

There are no equations provided for this topic.

Particles Topic

#	Written Form	Formula	Units
1	change in thermal energy = mass × specific heat capacity × temperature change	[ΔE =m c Δθ]	 ΔE Joules (J) m kilograms (kg) c Joules per kilogram per degree Celsius (J/kg°C) Δθ degrees Celsius (°C)
2	thermal energy for a change of state = mass × specific latent heat	[E = mL]	E Joules (J)m kilograms (kg)L Joules per kilogram (J/kg)
3	For gases: pressure × volume = constant	[pV = constant]	 p Pascals (Pa) V cubic metres (m³)

Atomic Structure Topic

There are no equations provided for this topic.