Equations to Remember – you have to learn and remember these equations

GCSE Physics (8463) (HT)

GCSE Combined Science: Trilogy (8464) (HT)

Forces Topic

#	Written Form	Formula	Units
	weight = mass × gravitational field strength		W Newtons (N)
1		$\int M - ma l$	m kilograms (kg)
–		[vv = mg]	g Newtons per kilogram
			(N/kg)
	work done = force × distance		W Joules (J)
2		[W = Fs]	F Newtons (N)
			s metres (m)
	force = spring constant × extension		F Newtons (N)
3		[F = ke]	k Newtons per metre (N/m)
			e metres (m)
			M Newton-metres (Nm)
4	moment = force × distance	[M = Fd]	F Newtons (N)
			d metres (m)
	pressure = force ÷ area		<i>p</i> Newtons per metres
5		$\left[n = F/A \right]$	squared (N/m ²)
			F Newtons (N)
			a metres squared (m ²)
	distance = velocity × time		s metres (m)
6		[<i>s</i> = <i>v t</i>]	 v metres per second (m/s)
			t seconds (s)
	acceleration = change in velocity ÷ time		<i>a</i> metres per second squared
7		$\int a = \Lambda u/t$	(m/s ²)
			 v metres per second (m/s)
			t seconds (s)

			Physics Paper 2 Handbook Page 2
force = mass × acceleration	[F = ma]	F	Newtons (N)
		m	kilograms (kg)
		а	metres per second squared
			(m/s²)
momentum = mass × velocity	[p = mv]	p	kilogram-metres per
			second (kgm/s)
		m	kilograms (kg)
		V	metres per second (m/s)
n	orce = mass × acceleration nomentum = mass × velocity	prce = mass × acceleration [F = ma] [momentum = mass × velocity [p = mv]	$prce = mass \times acceleration$ $\begin{bmatrix} F = ma \end{bmatrix}$ $\begin{bmatrix} F \\ m \\ a \end{bmatrix}$ p $promentum = mass \times velocity$ $\begin{bmatrix} p = mv \end{bmatrix}$ $\begin{bmatrix} p \\ m \\ v \end{bmatrix}$

Waves Topic

#	Written Form	Formula	Units
1	wave speed = frequency × wavelength	[v=fλ]	v metres per second (m/s)fHertz (Hz) (1/s) λ metres (m)

Magnetism and Electromagnetism Topic

No specific equations for this topic.

Space Topic

No specific equations for this topic.

Equations that are Provided – you don't have to remember these, but must be able to use them

GCSE Physics (8463) (HT)

GCSE Combined Science: Trilogy (8464) (HT)

Forces Topic

#	Written Form	Formula	Units
1	elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$	[E _e = ½ke ²]	 <i>E_e</i> Joules (J) <i>k</i> Newtons per metre (N/m) <i>e</i> extension (m)
2	pressure due to a column of liquid = height of column × density of liquid × gravitational field strength (g)	[p=hpg]	 <i>p</i> Newtons per metre squared (N/m²) <i>h</i> metres (m) <i>ρ</i> kilograms per metre cubed (kg/m³) <i>g</i> Newtons per kilogram (N/kg)
3	(final velocity) ² – (initial velocity) ² = $2 \times \text{acceleration} \times \text{distance}$	[v ² – u ² = 2as]	 <i>v</i> metres per second (m/s) <i>u</i> metres per second (m/s) <i>a</i> metres per second squared (m/s²) <i>s</i> metres (m)
4	Force = change in momentum ÷ time taken	[F=mΔv/Δt]	 F Newtons (N) m kilograms (kg) Δv metres per second (m/s) Δt seconds (s)

Waves Topic

#	Written Form	Formula	Units			
1	Period = $\frac{1}{\text{Frequency}}$	[T = 1/f]	Tseconds (s)fHertz (Hz)			
2	$Magnification = \frac{Image Height}{Object Height}$					
Magr	Vagnetism and Electromagnetism Topic					
#	Written Form	Formula	Units			
1	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	[F = BIl]	 F Newtons (N) B Teslas (T) I Amperes (A) l metres (m) 			
2	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_p I_p = V_s I_s$	V_p Volts (V) V_s Volts (V) I_p Amps (A) I_s Amps (A)			
3	potential difference across primary coil potential difference across secondary coil = number of turns in secondary coil	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$				

Space Topic

There are no equations provided for this topic.