
GCSE COMPUTING
KNOWLEDGE ORGANISER 2.3 PRODUCING ROBUST

PROGRAMS2.3.1 DEFENSIVE DESIGN

© J Bridgeman 2020

Defensive design considerations:

 Anticipating misuse

 Authentication

Input validation

Maintainability:

 Use of sub programs

 Naming conventions

 Indentation

 Commenting

SUB PROGRAMS

make programs easier

to understand. They

also make errors easier

to correct, since they

can be isolated without

affecting the main

program

for loop in range(1,10):
guess=int(input(“Enter your guess”))
if guess = number:

print(“Well done!”)
break

else:
print(“Bad luck”)

print(“Out of goes!”)

for l in range(1,10):
v =int(input(“Enter your guess”))
if x = n:

print(“Well done!”)
break

else:
print(“Bad luck”)
print(“Out of goes!”)

MAIN
MENU()
PLAYER_TURN()
COMPUTER_TURN()

GAME OVER

for loop in range(1,10):
guess=int(input(“Enter your guess”))
if guess = number:
print(“Well done!”)
break
else:
print(“Bad luck”)
print(“Out of goes!”)

for loop in range(1,10):
guess=int(input(“Enter your guess”))
if guess = number:

print(“Well done!”)
break

else:
print(“Bad luck”)

print(“Out of goes!”)

NAMING CONVENTIONS are important because sensibly named constants and variables make a program

easier to understand to programmers who are not familiar with it.

INDENTATION helps to identify blocks of code where iteration or selection are taking place. Many programming

languages automatically indent code. Without indentation it can be hard to identify where there are blocks of code

that do not belong to main ‘sequence’ of the program.

AUTHENTICATION is used to ensure that only

authorised users are able to access data in a system.

This can involve methods such as captcha or biometric

technology like finger print or face recognition.

VALIDATION is a set of rules that a program can use to

ensure user input is restricted to acceptable values and

does not crash the program.

COMMENTING is used to annotate a program listing

in order to explain what the code means. This is

useful when more than one developer is working on a

program and may not be familiar with aspects of the

code.

#create loop to run until correct password is
entered
#program checks password on file against user
input

DEFENSIVE DESIGN means writing a program

anticipating that users might either accidentally or

deliberately cause it to fail.

MAINTAINABILITY is a way of producing code in

such a way that it is easier to fix bugs and flaws

because it is easier for others to read and

understand. A range of techniques is available to

the programmer in order to ensure

maintainability.

2.3.2 TESTING

The purpose of testing

Types of testing:

 Iterative

 Final/terminal

Identify syntax and logic errors

Selecting and using suitable test data:

 Normal

 Boundary

 Invalid

 Erroneous

Refining algorithms

THE PURPOSE OF TESTING is not only

to ensure that the program works , but to

ensure that it completes the tasks that it

was designed to do. Testing identifies

any bugs that are in the program.

ITERATIVE TERMINAL

Carried out while the

program is in development

Carried out at the end of the

development process

Uses TRACE TABLES and

a TEST PLAN

Checks against original plan

to make sure all parts work

and that it works as intended

Print(“Good morning”)
Name = input(“What is your name?)
print(“Nice to meet you” name)

Capital ‘P’

Missing ”

Missing ,

- SYNTAX ERRORS are mistakes that prevent

the program from running.

- All programming languages have rules -

syntax - (for example, about the use of capital

letters) and syntax errors occur when these

rules are broken.

-Programs containing LOGIC ERRORS will run. However,

they do not produce the output that the programmer intended

- This is because the program does not contain syntax errors,

but instead has mistakes in the logic that make it behave

unexpectedly.

- Logic errors are often harder to spot (and fix) then syntax

errors

In this example, the program will run but it will not calculate

the area of a square because the programmer has used this

line…

instead of this line…

#program to calculate area of a square

side = int(input(“Please enter the length)
area = side + 4
print(“The area is”,area)

area = side + 4

area = side * 4

Type of test

data
EXPLANATION EXAMPLE

NORMAL Data that the program

that is designed to

handle

1,2,3,4,5,6
,7,8,9,10

BOUNDARY

/EXTREME

Data on the very

edges of what is / isn’t

acceptable

1,10

INVALID Data the is outside the

limits set by the

program

0,11

ERRONEOUS Data that is unsuitable

for the purpose -
A,B,C,#,!

number = int(input(“Please enter a number from 1 – 10))

Testing allows the programmer to REFINE ALGORITHMS.

Once the programmer has tested the program and identified

the mistakes, they will need to return to the program to

correct or improve the code.

Test

Number

Test

purpose

Test

data

Expected

result

Actual

result

Before a program can

be tested, the

programmer needs to

create a TEST PLAN.

The programmer will

have to identify TEST

DATA that can be used

in the program to see if

it generates errors.

Typical plan layout

