

Version 1 1 © OCR 2020

J277 Guide to programming techniques:

Python

Introduction

This guide is designed to support candidates’ learning about how to use Python and how it relates

to the OCR Exam Reference Language.

Please refer to the J277 Specification, Section 2.2 for a full list of skills/techniques that candidates

must be familiar with.

Disclaimer: Please note that this is not a complete guide to Python and only explores some of the

ways to use Python to express the techniques in the specification.

Using the guide

This guide uses Python 3.

>>> this denotes the use of the interpreter (shell) and not a saved .py file.

If you are copying and pasting the code below, sometimes you will need to change the quote

marks (") in your chosen IDE as sometimes the formatting means the IDE doesn’t recognise them.

https://www.ocr.org.uk/Images/558027-specification-gcse-computer-science-j277.pdf

Version 1 2 © OCR 2020

Contents

Introduction .. 1

Using the guide .. 1

Contents .. 2

The use of variables ... 3

Operators ... 4

Inputs ... 7

Outputs and assignments .. 8

Sequence .. 8

Selection .. 9

Iteration (count-controlled loops) .. 10

Iteration (condition-controlled loops) .. 101

The use of basic string manipulation .. 12

Open .. 14

Read .. 14

Write .. 15

Close ... 16

The use of records to store data .. 16

The use of SQL to search for data ... 16

The use of arrays ... 17

How to use sub programs (functions and procedures) ... 19

Integer ... 20

Real ... 20

Character and string .. 20

Casting .. 21

Random ... 22

Combinations of techniques ... 22

Inputs, variables, random integers and outputs in a function .. 22

Looping through lists .. 23

Read from a file and write back to it ... 25

Version 1 3 © OCR 2020

The use of variables

OCR Exam Reference Language

x = 3 name = "Bob" Variables are assigned using the = operator.

const pi = 3.14 Variables in the main program can be made a

constant with the keyword const.

global userID = 123

Variables in the main program can be made

global with the keyword global.

Python

>>> count = 5

>>> count

5

>>> total = 2

>>> count + total

7

>>> count = count + 2

>>> count

7

A variable is initialised (created) as soon as a

value is stored in it. The variable count is

assigned the value 5. When count is called it

returns the value 5.

Once assigned you can use the variable with

other values or variables such as count + total

evaluating to 7 (5+2).

A variable can be overwritten with a new value

at any time.

>>> count = "it is a silly place"

>>> count

"it is a silly place"

You can assign other data types to variables.

Here we assign the letters "it is a silly place" to

spam.

>>> pi = 3.14

>>> pi

3.14

There are no constants in Python, instead use

a variable and simply don’t change it.

In Python you simply document that it should

not be changed. .

someGlobal = 10

def func1():

 someGlobal = 20

You may think this will print 20 but it prints 10,

In Python the scope of a variable lies within a

function. If there is not a name assigned within

the function it looks outside of it, but not in

Version 1 4 © OCR 2020

def func2():

 print(someGlobal)

func1()

func2()

other functions. If you want a variable in

function to be treated as a global variable, then

you can use the global keyword as below:

def func1():

 global someGlobal

 myGlobal = 20

There are some rules with variable names in Python:

• they can only be one word

• they can only use letters, numbers and underscores (_)

• hyphens are not allowed (-)

• spaces are not allowed

• they can’t begin with a number

• special characters are not allowed such as $ or "

Please remember:

• variable names are case sensitive, COUNT and count are different variables

• it is convention in Python to use all lower case letters for variable name, using

underscore_separators or CamelCase

• a good variable name describes the data it contains

Operators

OCR Exam Reference Language

Comparison operators

AND Logical AND

OR Logical OR

NOT Logical NOT

Version 1 5 © OCR 2020

Comparison operators

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Arithmetic operators

+ Addition e.g. x=6+5 gives 11

- Subtraction e.g. x=6-5 gives 1

* Multiplication e.g. x=12*2 gives 24

/ Division e.g. x=12/2 gives 6

MOD Modulus e.g. 12MOD5 gives 2

DIV Quotient e.g. 17DIV5 gives 3

^ Exponentiation e.g. 3^4 gives 81

Version 1 6 © OCR 2020

Python

Comparison operators

>>> cats = 9

>>> cats == 9

True

examBoard = "OCR"

print ("My exam board is OCR")

print (examBoard == "OCR")

True

We set examBoard to OCR then test whether

they are equivalent which returns as True.

>>> 5 != 9

True

parrots = 1

if parrots != 2:

 print ("squawk")

squawk

Five is not equal to nine.

parrots is equal to 1, if parrots does not

equal 2 then it prints squawk.

>>> 6 > 6

False

>>> (1>2) and (9>=1)

False

Six is not greater than six.

One is not greater than two (False), nine is not

greater than or equal to one (False), so False

AND False evaluates to False.

>>> 7 <= 7

True

>>> (6 < 4) or (4 != 3)

True

Seven is less than or equal to seven.

Six is not less than 4 (False), 4 is not equal to

3 (True), so False OR True evaluates to True.

>>> 8 > 2

True

>>> (1>2) and (2>4)

False

Eight is greater than 2.

1 is greater than 2 (True), 2 is greater than 4
(False). True AND False evaluates to False.

>>> 9 >= 3

True

>>> (10 >= 1) and (1 < 2)

True

Nine is greater than or equal to 3.

Ten is greater than or equal to 1 (True) and 1
is less than 2 (True). True AND True
evaluates to True.

Version 1 7 © OCR 2020

Arithmetic operators

>>> 1 + 1

2

One add one equals 2.

>>> 8 – 10

-2

Eight take away ten evaluates to negative two.

>>> 2 * 6

12

Two multiplied by six evaluates to twelve.

>>> 6 / 2

3

Six divided by two evaluates to three.

>>> 4 % 3

1

Four MOD three evaluates to 1

>>> 9 // 2

4

Nine DIV two evaluates to four.

>>> 4 ** 4

256

Four ^ (exponent) four evaluates to two

hundred and fifty-six.

Inputs

OCR Exam Reference Language

myName = input("Please enter your

name")

Here we declare a variable myName and

assign the input to it. We also prompt the user

as to what to input.

Python

>>> print("What is your favourite

colour?")

>>> favColour = input()

print(favColour)

>>> favColour = input("What is

your favourite colour?")

You don’t have to prompt the user in Python

but it usually helps. Inputs can be stored as a

variable so they can be used later.

You can also combine the message as an

argument.

Version 1 8 © OCR 2020

Outputs and assignments

OCR Exam Reference Language

print(string)
print(variable)

Outputs the argument (string or variable) to the
screen.

Python

>>> print("The parrot is no more")

The parrot is no more

>>> number = 66

>>> print(number)

66

The print function takes an argument that is

then printed to the screen.

Sequence

OCR Exam Reference Language

x = 3

y = 2

x = x + y

print(x)

x is assigned the value of 3, y is assigned

the value of 2. x is then re-assigned to be the

value of 3 plus 2 which evaluates to 5 and is

printed to the screen.

It should be noted that that value of x changes

in sequence, line by line as it is interpreted, at

the start of line 3 (x=x+y) x still has a value of

3 but once that line is run it then changes to be

x+y or 5.

Python

>>> numberOne = 2

>>> numberTwo = 2

>>> print(numberOne)

2

>>> numberOne = numberOne +

numberTwo

>>> print(numberOne)

4

numberOne is assigned the value 2.

numberTwo is also assigned the value of 2.

numberOne is then re-assigned to be

numberOne (2 as it is currently) plus

numberTwo, which evaluates to 4.

Similarly in this example the value of
numberOne is 2 until the line numberOne =

numberOne + numberTwo is interpreted

which results in numberOne now has a value

of 4.

Version 1 9 © OCR 2020

Selection

It helps to think of selection as a test of a condition such as:

if some condition is met:
 do something

OCR Exam Reference Language

if entry == "a" then

 print("You selected A")

elseif entry=="b" then

 print("You selected B")
else

 print("Unrecognised ")
endif

switch entry:

 case "A":

 print("You selected A")

 case "B":

 print("You selected B")
 default:

 print("Unrecognised")
endswitch

Selection will be carried out with if/else and
switch/case. In the example the OCR Exam
Reference Language is checking the input and
returning a message based upon the specific
input required, the else block is used as a
catch for any unexpected input which allows
the code to degrade gracefully.

The switch/case method works in the same

way.

Python

airSpeedVelocity = 11

if airSpeedVelocity <= 11:

 print ("European")

else:

 print ("African")

The airSpeedVelocity has a value of 20

the if statement is used to test whether the

value of airSpeedVelocity is greater than

or equal to 22. If it evaluates to True then it

prints "European" otherwise it prints "African".

The else block is only executed if the

conditional test returns False. This is great for

situation where there are only two outcomes.

points = 4

if points == 4:

 print("Max Score")

elif points > 0 <4:

 print("You have

scored",points)

else:

 print("No points scored")

ni = ["shrubbery", "slightly
higher", "a little path"]

if "shrubbery" in ni:

 print ("Ekky ekky")

We can go further and add in more options by

using an elif that allows more conditional

tests. Note that the elif has 2 conditional

tests, greater than 0 AND less than 4.

You can use multiple elif statements if

necessary.

Sometimes there are multiple conditions that

could be True and in this case you should use

the in operator to do a membership test in a

http://docs.python.org/3/reference/expressions.html#in

Version 1 10 © OCR 2020

if "slightly higher" in ni:

 print ("kerplang")

if "a little path" in ni:

 print ("zoot boing")

sequence of accepted elements in a list for

example.

Python does not support switch/case statements

Iteration (count-controlled loops)

OCR Exam Reference Language

for i=0 to 7

 print ("Hello")

next i

Will print "Hello" 8 times (0-7 inclusive). Note

that the count starts at 0.

for i=0 to 7 step 2

 print ("Hello")

next i

Will print "Hello" 4 times. The step 2

command increases the counter (i) by 2 each

time.

Python

print("Here are 5 Knights")

for i in range(5):

 print("Knight ("+str(i)+")")

Knight (0)

Knight (1)

Knight (2)

Knight (3)

Knight (4)

The for loop will loop for a set number of

times as defined by the range() function. In

this example we print a string then print 5

times the string "Knight" followed by the

value for i.

guess = 0

for num in range(101):

 guess = guess + num

print(guess)

5050

In this example we are adding up all the

numbers from 0 to 100 using a for loop. This

shows how useful they can be.

for i in range(0,10,3):

 print(i)

0

3

6

9

You can also use three arguments in the range

function range(start_value,

stop_value, step_value). The step

value is the value by which the variable is

increased by each iteration.

Version 1 11 © OCR 2020

Iteration (condition controlled loops)

OCR Exam Reference Language

while answer!= "x"

 answer = input("Press any key

to continue or x to quit")

endwhile

Condition-controlled loop, this will loop until the

user inputs "x". It will check the condition

before entering the loop.

do

 answer = input("New answer")

until answer != "Correct"

The loop iterates once before the check is

carried out.

Note that the 'until' means that the logic of the

loop has now changed. Be careful when

writing this in Pseudocode!

Python

coconut = 0

while coconut < 3:

 print("clip clop")

 coconut = coconut + 1

clip clop

clip clop

clip clop

A while statement is a condition controlled loop.

The indented code will be repeated WHILE the

condition is met

while 1 == 1:

 print ("lol")

infinite lols

One thing to be careful of is creating an infinite

loop. In the example the while loop checks

whether 1 is equal to 1 and then prints "lol" so

it will print "lol" for ever.

troll = 0

while troll <1:

 print ("lol ")
 troll = troll + 1

 break

print("phew ")

phew

You can use a break statement to jump out of a

loop. In Python you will not need this if you use

the loop properly.

for letter in "Python":

 if letter == "h":

 continue

 print ("Current Letter :",

letter)

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : o

Current Letter : n

You can also use a continue statement that

when reached will jump back to the start of the

loop and re-evaluate the loop’s condition just as

when the loop reaches the end of the loop. In

this example the continue statement rejects the

remaining statement in the current iteration of the

loop and moves the control back to the top of the

loop.

Version 1 12 © OCR 2020

The use of basic string manipulation

OCR Exam Reference Language

stringname.length

subject = "Computer Science"

subject.length

This gets the length of a string.
subject.length will return 15

stringname.subString(startingPositi

on, numberOfCharacters)

subject.substring(3,5)

subject.left(4)

subject.right(3)

This gets a substring but the string will start at

the 0th character.

subject.substring(3,5) will return

"puter"

subject.left(4) will return "Comp"

subject.right(3) will return "nce"

stringname.upper

stringname.lower

subject.upper

subject.lower

This converts the case of the string to either

upper or lower case.

subject.upper will return "COMPUTER
SCIENCE"

subject.lower will return "computer
science"

.

ASC(character)

CHR(asciinumber)

ASC(A)

CHR(97)

This converts to and from ASCII.

ASC(A) will return 65 (numerical)

CHR(97) will return "a" (char)

Uppercase letters and lowercase

letters have different ASCII values

as does numbers represented in a

string.

someText="Computer Science"

print(someText.length)

print(someText.substring(3,3))

16

put

Here length of the variable is printed along with

the 3 characters 3 character in for 3 characters.

Version 1 13 © OCR 2020

Python

>>> food = "eggs"

>>> print(len(food))

4

>>> food =

["eggs","oranges","apples"]

>>> print(len(food))

3

Here we define a variable as the string
"eggs" and then print the length of the string

using the len function.

This can also be done with a list where the
number of values in the list is returned.

>>> animal = "It\’s only a bunny"

>>> print(animal[0:5])

It’s

>>> food =

["eggs","oranges","apples"]

>>> print(food[:2])

["eggs","oranges"]

>>> print(food[2:])

["apples"]

Note the \’ that escapes (ignores) the ‘ for it’s.
The substring consists of the start position and
the end position of the characters. Also note its
starts from 0.

This can also be done with a list where the list
value is returned.

>>> fruit = "Fruit is tasty "

>>> print(fruit.upper())

FRUIT IS TASTY

>>> print(fruit.lower())

fruit is tasty

favColour = input("What is your

favorite colour?").lower()

if favColour = "blue":

 print ("aaarrrrghghg")

else:

 print ("no, yellow!")

We can use the .uppper and .lower methods to
change the case of a string.

Changing the case to all upper or lower makes

checking the input easier as you don’t need to

worry about the case.

>>> ord("b")

98

>>> chr(13)

\r

The ord function gives the integer value of a

character.

The chr function returns an integer into ascii.

Version 1 14 © OCR 2020

>>> tennis = "tennis"

>>> tennis += " ball"

>>> print (tennis)

tennis ball

There are other interesting things you can do

by using augmented assignments. The +=

assignment for example concatenates strings.

>>> "tennis" in "tennis ball"

True

>>> "gord" in "brave sir Robin"

False

You can also perform logical tests on strings

using in and not.

Open

OCR Exam Reference Language

myFile = open("sample.txt")

x = myFile.readLine()

myFile.close()

To open a file to read from open is used and

readLine to return a line of text from the file.

Python

>>> myFile = open("myFilename")

The first line opens a file (myFile) in read only

by default.

Read

OCR Exam Reference Language

myFile = open("sample.txt")

while NOT myFile.endOfFile()

 print(myFile.readLine())

endwhile

myFile.close()

readLine is used to return a line of text from

the file. endOfFile()is used to determine the

end of the file. The example will print out the

contents of sample.txt

Version 1 15 © OCR 2020

Python

>>> myFile =

open("myFilename","r")

>>> myFile.read()

>>> for line in myFile:

 print (line, end = " ")

The first line opens a file (myFile) and sets

the mode to read only ("r"). Please note that

"myfilename" will be looked for in the same

folder as the .py file unless otherwise stated.

The .read method with no arguments will

read the entire file.

You can also loop through the file object line
by line. The loop ends when it reaches the end
of the file.

Write

OCR Exam Reference Language

myFile = open("sample.txt")

myFile.writeLine("Hello World")

myFile.close()

To open a file to write to, open is used and

writeLine to add a line of text to the file. In

the example, Hello world is made the

contents of sample.txt (any previous contents

are overwritten).

Python

>>> myFile.open("myFilename","w") In this example a variable (myFile) is created

and then open is used to create a file object
with 2 arguments. The first is a string with the
filename and the second is the mode to be
used. This can be:

r – (default if not specified) read only

w - write

a – open for appending only

r+ - read and write

Version 1 16 © OCR 2020

Close

OCR Exam Reference Language

myFile.close() This closes the file.

Python

myFile.close() When you are done with a file close it using
the .close method to free up system

resources.

The use of records to store data

OCR Exam Reference Language

array people[5]

people[0]="Sir Robin"

people[1]="Brave"

people[2]="chicken"

people[3]="ran away"

Arrays will be 0 based and declared with the
keyword array.

Python

>>> spam = ["Sir Robin", "Brave",
"chicken ", "ran away"]

>>> print(spam[0])

Sir Robin

In Python we can store records using lists or
dictionaries. The record "spam" has four
properties that can be indexed by position in
the list.

The use of SQL to search for data

OCR Exam Reference Language

SELECT

FROM

WHERE

SELECT LastName

FROM Customers

WHERE LastName = "Smith";

Version 1 17 © OCR 2020

SQL

This example assumes there is a database created called "Customers" with columns called:

• CustomerID

• CustomerName

• ContactName

• Address

• City

• Country

SELECT CustomerID FROM Customers This selects the CustomerID field from the
Customers database.

SELECT ContactName,Address

FROM Customers

WHERE ContactName = "Mr Creosote";

This selects the ContactName and Address

columns from the Customers table and then

specifically looks for a Mr Creosote in the
ContactName field.

The use of arrays

OCR Exam Reference Language

array names[5]

names[0]="Ahmad"

names[1]="Ben"

names[2]="Catherine"

names[3]="Dana"

names[4]="Elijah"

print(names[3])

array board[8,8]

board[0,0]="rook"

Arrays will be 0 based and declared with the
keyword array.

Example of a 2D array:

Python

>>> spam = ["Sir Robin", "Brave",
"chicken", "ran away"]

>>> print(spam[0])

Sir Robin

In this example we create a list called spam and

then print the first element (0).

>>> lol = [

 [1,2,3,4]

 [2,3,4,5]

 [3,4,5,6]

 [4,5,6,7]

]

Here we have a nested list of 3 lists of length 4.

list_of_lists = [] In this example we create a list of lists,

Version 1 18 © OCR 2020

a_list = []

for i in range(0,10):

 a_list.append(i)

 if len(a_list) > 3:

 a_list.remove(a_list[0])

list_of_lists.append((list(a_list),

a_list[0]))

print(list_of_lists)

[([1, 2, 3], 1), ([2, 3, 4], 2),

([3, 4, 5], 3), ([4, 5, 6], 4),

([5, 6, 7], 5), ([6, 7, 8], 6),

([7, 8, 9], 7)]

the first, [:], is creating a slice (normally often

used for getting just part of a list), which
happens to contain the entire list, and so is
effectively a copy of the list.

The second, list() is using the

actual list type constructor to create a new list
which has contents equal to the first list.

breakfast = ["spam ", "eggs ", "beans
", "toast "]
breakfast.sort()

print(breakfast)

["beans", "eggs", "spam", "toast"]

breakfast.sort(reverse = True)

print(breakfast)

["toast", "spam", "eggs", "beans"]

lunch = ["spam ", "eggs ", "beans ",
"more spam "]
print(sorted(lunch))

["beans", "eggs", "more spam",

"spam"]

lunch.reverse()

print(lunch)

["more spam", "beans", "eggs",

"spam"]

Sorting lists is usually useful and you can do
this by using the .sort method for permanent

sorting or the sorted() function for temporary

sorting of lists.

You can also use arguments to reverse the
order of the sort or you could use the
.reverse method.

#Make an empty list for storing

cheese.

cheese = []

#make 10 cheeses

for cheeseNumber in range(10):

 newCheese =

{"type":"Cheddar","smell":"Strong",

"Colour":"Yellow"}

 cheese.append(newCheese)

#Show the first 2 cheeses

for ch in cheese[:3]:

 print(ch)

{"type": "Cheddar", "smell":

"Strong", "Colour": "Yellow"}

You can also create lists of dictionaries to make
use of immutable features of a dictionary. Even
though the output shows 3 dictionaries with the
same information in them, Python treats each
one as a separate object.

Version 1 19 © OCR 2020

{"type": "Cheddar", "smell":

"Strong", "Colour": "Yellow"}

{"type": "Cheddar", "smell":

"Strong", "Colour": "Yellow"}

How to use sub programs (functions and procedures)

OCR Exam Reference Language

function triple(number)

 cubedNumber=number*3

 return cubedNumber endfunction

y= triple(7)

procedure greeting(name)

 print("hello"+name)

endprocedure

greeting("Gemma")

Here we define a function with a name that
takes an argument (number). The calculation

is then performed and the function is ended.

Here we can see the argument for the
procedure called from main program to print a
string including the argument.

Python

def addNum(x):

 return(x+1)

y = addNum(3) #call it

print(y) #print it

A function is like a mini program within your
program. In the example we define a function
(addNum) and it takes an argument, 3 in the

example and then assigns that to a variable and
then prints it

You can then call the function to carry out its
function. See the ‘Combinations of techniques’
section below to see more functions with other
techniques within them.

Version 1 20 © OCR 2020

Integer

OCR Exam Reference Language

int("3")

3

The int casts the 3 as an integer.

Python

>>> int('100')

100

The int function is used to typecast a string

into an integer.

Real

OCR Exam Reference Language

float("3.14")

3.14

The float casts the 3.14 into a real number.

Python

>>> float('100')

100.0

The float function converts from a string to

a float. You can tell by the outputs .0 at the

end that it is a float/real number.

Character and string

OCR Exam Reference Language

str(3)

"3"

The str casts the 3 into a string.

Python

>>> string = "always look on the

bright side of life"

>>> print(string)

always look on the bright side of

life

>>> number = "1234"

Python will recognise a string as such and will
automatically assign what it thinks is the
correct data type. You can of course
set/change the data type to typecast your
variables.

Version 1 21 © OCR 2020

>>> num = int(number)

>>> num

1234

Here we declare a variable with a number
(1234) Python will treat this as a string unless
we tell it otherwise.

Casting

OCR Exam Reference Language

str(3) returns "3"

int("3") returns 3

float("3.14") returns 3.14

real("3.14") returns 3.14

bool("True") return True

Variables can be typecast using the int str, real

and bool float functions.

Python

>>> str(100)

'100'

>>> int('100')

100

>>> float('100')

100.0

Converts from a numeric type to a string.

Converts from a string to an integer.

Converts from a string to a float.

Version 1 22 © OCR 2020

Random

OCR Exam Reference Language

number = random(1,6)

number = random(-1.0, 10.0)

Creates a random number between 1 and 6

inclusive.

Creates a random real number between -1.0

and 10 inclusive

Python

>>> import random

>>> number=random.randint(1,6)

>>> print(number)

4

>>> import random

>>> number=random.randint(-1,10)

>>> print(number)

0

Import random imports the set of functions to

use the random number generator.

random.randint(1,6) creates a random

number between 1 and 6 inclusive.

random.randint(-1,10) creates a random

number between -1 and 10 inclusive

Combinations of techniques

Inputs, variables, random integers and outputs in a function

Python

import random

def findName(name):

 print('Hello ' + name)

 print('What is your favorite

colour?')

 colour = input()

 if colour == 'yellow':

 print('You shall pass')

 else:

 num = random.randint(0,99)

 while num < 99:

 print('aaarrrghghgh')

 num = num + 1

 print('Splat, you are

splatted ' + name)

name = input('What is your name?')

findName(name)

This example starts by importing the random

set of functions that we will use to generate a
random number. We then create a function
called findName that’s expects an argument

called name. The argument is provided by the

input and variable (name). The user is then

asked what their favorite colour is and a logical
test is performed where if they type yellow they
get one answer and if they type anything else
they get a random amount of ‘aaaargh’
generated by the random.randint and this

is used to print the string a random amount of
times depending on whether it is less than 99
or not using a while loop. Note how nothing
actually happens until the last two lines are
interpreted where the input for name is taken

and the then the findName function is called.

import random

Here is another example where a user is
prompted to make a choice. Note the use of !=

Version 1 23 © OCR 2020

def intro():

 print('You find yourself in a

room for a red and blue door')

 print('On the wall it says

\"One door leads to cake the other

to certain death\"')

def choice():

 door = ''

 while door != '1' and door !=

'2':

 print('Which door do you

choose?(1 or 2)')

 door = input()

 return door

def checkDoor(chosenDoor):

 print('you turn the handle and

the door opens...')

 print('The light in the room

turns on and you see...')

 niceRoom = random.randint(1,2)

 if chosenDoor ==

str(niceRoom):

 print('an empty plate, the

cake was a lie!')

 else:

 print('a wafer thin

mint...noooooo')

intro()

doorNumber = choice()

checkDoor(doorNumber)

in choice (not equal to). Also note how all

the functions refer to each other in the correct
order and separate out the process sensibly.

Looping through lists

OCR Exam Reference Language

array names[5]

names[0]="Ahmad"

names[1]="Ben"

names[2]="Catherine"

names[3]="Dana"

names[4]="Elijah"

for i=0 to 4

 print ("Hello" + i)

Version 1 24 © OCR 2020

Python

py_chars = ["The Announcer", "Mr
Badger", "Arthur Nudge", "Spiny
Norman", "Eric Praline"]
for chars in py_chars:

 print(chars)

The Announcer

Mr Badger

Arthur Nudge

Spiny Norman

Eric Praline

In this example we define a list of Monty
Python characters and then loop through the
list printing each one.

py_chars = ["The Announcer", "Mr
Badger", "Arthur Nudge", "Spiny
Norman", "Eric Praline"]
for chars in py_chars:

 print("I love " + chars +

'.\n")

print("And now for something

completely different")

I love The Announcer.

I love Mr Badger.

I love Arthur Nudge.

I love Spiny Norman.

I love Eric Praline.

And now for something completely

different

You can add other things to your loops such as
strings, spacing between lines (+"\n’).

pyChars = ["The Announcer", "Mr
Badger", "Arthur Nudge", "Spiny
Norman", "Eric Praline"]
newChar = "ken shabby"

if newChar not in pyChars:

 print(newChar.title() + " is

not in the list")

Ken Shabby is not in the list

In this example we define a new variable with
a string of a new character, we want to check if
the character is in the list so we loop through
the list using not in operators. Note also the

.title method used to capitalise the output

string.

Version 1 25 © OCR 2020

Read from a file and write back to it

OCR Exam Reference Language

myFile = open("sample.txt")

myFile.writeLine("Hello World")

myFile.close()

The file is opened and then a string is added

and the file is closed.

Python

The example below requires you to have created a .txt file with some text in it in the Python

folder.

>>> import os

>>> os.getcwd()

""

"C:\\Python34\NEA.py"

To work with files it is useful to know the
current working directory (cwd) as it is
assumed you are using the cwd unless
otherwise specified.

>>> a_file =

open("C:\\Python\NEA.txt")

>>> a_file_content = a_file.read()

>>> a_file_content

Waitress: Well, there's egg and

bacon; egg sausage and bacon; egg

and spam; egg bacon and spam; egg

bacon sausage and spam; spam bacon

sausage and spam; spam egg spam

spam bacon and spam; spam sausage

spam spam bacon spam tomato and

spam; or Lobster Thermidor au

Crevette with a Mornay sauce

served in a Provencale manner with

shallots and aubergines garnished

with truffle pate, brandy and with

a fried egg on top and spam.

Note I have used an absolute path, you can
use a relative path if the file is in the cwd
(open("NEA.txt")).

#!/usr/bin/python

-*- coding: utf-8 -*-

another_file = open("Ni.txt","w")

another_file.write("We are the

Knights who say…\n")

another_file.close()

another_file = open("Ni.txt","a")

another_file.write("Ni!")

print(another_file)

another_file.close()

As we are creating text we need tell Python
which encoding to use. As I am on a Windows
PC I define it as UTF-8. In this example we
open a file called Ni.txt which doesn’t exist so
Python creates is open opens it in the write
mode and then adds a string and then closes
it.

Here we open the same file in append mode
and then append another string and close it.

http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav
http://www.montypython.net/sounds/sketches/spamenu.wav

Version 1 26 © OCR 2020

OCR Resources: the small print
OCR’s resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by the Board, and the decision

to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within

these resources.

Our documents are updated over time. Whilst every effort is made to check all documents, there may be contradictions between published support and the specification, therefore

please use the information on the latest specification at all times. Where changes are made to specifications these will be indicated within the document, there will be a new version

number indicated, and a summary of the changes. If you do notice a discrepancy between the specification and a resource please contact us at:

resources.feedback@ocr.org.uk.

© OCR 2020 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this

work. OCR acknowledges the use of the following content: n/a

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding

organisation, you can request more information by completing the Expression of Interest form which can be found here:

www.ocr.org.uk/expression-of-interest

Looking for a resource? There is now a quick and easy search tool to help find free resources for your qualification:

www.ocr.org.uk/i-want-to/find-resources/

file://///filestorage/OCR/PD/ProdSup/Design/Studio/Visual%20Style%20Guidelines/2016_Templates/resources.feedback@ocr.org.uk
mailto:resources.feedback@ocr.org.uk
http://www.ocr.org.uk/expression-of-interest
http://www.ocr.org.uk/i-want-to/find-resources/
http://www.ocr.org.uk/i-want-to/find-resources/
https://www.surveymonkey.co.uk/r/ZL5Z53B

